0

Let $R=K[x_1,\ldots,x_n]$ be a polynomial ring over a field $K$ and $I=(f_1,\ldots,f_q)$ a monomial ideal of $R$. If $f_i$ is homogeneous of degree $d\geq 1$ for all $i$, then prove that $$ R[It]/\mathfrak m R[It]\simeq K[f_1t,\ldots, f_q t]\simeq K[f_1,\ldots,f_q] \text{ (as $K$-algebras).} $$ $R[It]$ denotes the Rees algebra of $I$ and $\mathfrak m=(x_1,\ldots,x_n)$.

Willie Wong
  • 75,276

0 Answers0