I've been struggling for days on how to solve the following limit:
$\begin{gather*} \lim\limits_{x\to 0} \frac{x^3\sin(x)}{[\ln(1+x)-x]^2} \end{gather*}$
I shouldn't use neither the L'Hopital's rule nor series expansions.
I tried to simplify the limit by using the fact that:
$\begin{gather*} \lim\limits_{x\to 0} \frac{\sin(x)}{x} = 1 \end{gather*}$
...and I got:
$\begin{gather*} \lim\limits_{x\to 0} {\bigg(\frac{x^2}{\ln(1+x)-x}\bigg)^2} \end{gather*}$
To semplify the problem I simply tried to solve:
$\begin{gather*} \lim\limits_{x\to 0} {\frac{x^2}{\ln(1+x)-x}} \end{gather*}$
...remembering that the result of this limit should be squared to get the limit we're looking for.
Then I used the fact that $e^{\ln(x)}=x$ and so I obtained:
$\lim\limits_{x\to 0} {\frac{x^2}{e^{(\ln(\ln(1+x)-x))}}}$
At this point I did a substitution: $\ln(1+x) = t $ And so I got:
$\lim\limits_{x\to 0} {\frac{(e^t-1)^2}{e^{(\ln(t+1-e^t))}}}$
which is equal to:
$\lim\limits_{x\to 0} {\frac{(e^t-1)^2}{-e^t+t+1}}$ = $\lim\limits_{x\to 0} {-\frac{(e^t-1)^2}{e^t-t-1}}$
At this point I got stucked.
Any suggestion will be very welcomed, thanks in advance.
Simon