let $f$,$g$ be $L^1(\mathbb R)$ functions with Lebesgue measure. Define $f_t(x)=\frac {f(x/t)}t$. Prove $f_t*g$ converges to $ag$ in $L^1$ when $t\to0^+$, where $a=\int_{\mathbb R}f(x)dx$.
my approach in brief: since $f,g\in L^1$, by Tonelli-Fubini's theorem, we can show $$\int_{\mathbb R}f_t*gdx=\left(\int_{\mathbb R}f(x)dx\right)\int_{\mathbb R}g(y)dy$$ $$\int_{\mathbb R}f_t*gdx=\left(\int_{\mathbb R}f(x)dx\right)\int_{\mathbb R}g(x)dx$$ $$\int_{\mathbb R}\left(f_t*g-\left(\int_{\mathbb R}f(x)dx\right)\int_{\mathbb R}g(x)\right)dx=0$$ Therefore, $$\int_{\mathbb R}|f_t*g(x)-ag(x)|dx=0$$ I am feeling something is wrong with my approach. Do correct me and give me some hints for solving this simple question. Thanks.