To be honest, I'm really struggling with the intuition of conditional expectation where we condition on a sub $\sigma$-algebra. The definition in my lecture notes is as follows:
Let $(\Omega,\mathcal{F},\mathbb{P})$ a probability space and $\mathcal{G}\subseteq\mathcal{F}$ a sub $\sigma$-algebra and $X\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$. The conditional expectation $\mathbb{E}\left[X\mid\mathcal{G}\right]$ is a subset of random variables in $Y\in\mathcal{L}^1(\Omega,\mathcal{F},\mathbb{P})$ for which: $$\int_GYd\mathbb{P}=\int_GXd\mathbb{P}\text{ for all }G\in\mathcal{G}$$
Although I technically understand the requirement in the definition, I have no intuition at all for what a conditional expectation in this sense means. If $\mathbb{E}\left[X\mid\mathcal{G}\right]$ is a random variable, then what is $\mathbb{E}\left[X\mid\mathcal{G}\right](\omega)$? What does it mean for conditional expectations to be independent?