Does holds $\int\limits_{-\infty}^{\infty} f(t)\,g(t)\,dt \leq \sqrt{\int\limits_{-\infty}^{\infty} |f(t)|^2 dt}\,\cdot \sup\limits_t|g(t)|$ true for every real valued functions $f(t),\, g(t)$?
I want to know if is possible to mix the following inequalities (Hölder and Cauchy-Schwartz):
- $\int\limits_{-\infty}^{\infty} f(t)\,g(t)\,dt \leq \left| \int\limits_{-\infty}^{\infty} f(t)\,g(t)\,dt \right| \leq \int\limits_{-\infty}^{\infty} |f(t)\,g(t)|\,dt$
- $\int\limits_{-\infty}^{\infty} |f(t)\,g(t)|\,dt \leq \int\limits_{-\infty}^{\infty} |f(t)|\,dt \cdot \sup\limits_t |g(t)|$
- $\int\limits_{-\infty}^{\infty} |f(t)\,g(t)|\,dt \leq \sqrt{\int\limits_{-\infty}^{\infty} |f(t)|^2\,dt}\,\cdot \sqrt{\int\limits_{-\infty}^{\infty} |g(t)|^2\,dt}$
- $\left( \int\limits_{-\infty}^{\infty} f(t)\,g(t)\,dt \right)^2 \leq \int\limits_{-\infty}^{\infty} |f(t)|^2\,dt\,\cdot \int\limits_{-\infty}^{\infty} |g(t)|^2\,dt$
If the answer is false in general, There are conditions for $f(t), g(t) \neq 0\,\, \forall\, t$ where the required inequality is true?