Let $G$ be a non-abelian group of order $p^2q$ and $p> q$.
i) $p \equiv 1 \mod q$ or $p \equiv -1 \mod q$;
ii) The number of elements of order $pq$ in group $G$ is $0$ or $p(p-1)(q-1)$.
Let $G$ be a non-abelian group of order $p^2q$ and $p> q$.
i) $p \equiv 1 \mod q$ or $p \equiv -1 \mod q$;
ii) The number of elements of order $pq$ in group $G$ is $0$ or $p(p-1)(q-1)$.