Let $X$ be a random variable and $\left\{X_{n}\right\}$ be a sequence of random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Prove that $X_n \to X$ a.s. implies $X_n \to X$ in probability.
Could you check if my attempt is correct?
It suffices to prove that $$\mathbb P(|X_n-X| > 1/m) \to 0 \quad \text{as} \quad n \to \infty, \quad m \in \mathbb N^*.$$
Notice that $$\{\omega \mid X_n (\omega) \to X (\omega)\} = \bigcap_{m \in \mathbb N^*} \bigcup_{N \in \mathbb N} \bigcap_{n \ge N} \{ \omega | X_n (\omega) - X (\omega) | \le 1/m \}.$$
Because $\mathbb P( \{\omega \mid X_n (\omega) \to X (\omega)\} )=1$, we have $$\mathbb P \left ( \bigcup_{N \in \mathbb N} \bigcap_{n \ge N} \{ \omega \mid | X_n (\omega) - X (\omega) | \le 1/m \} \right ) = 1, \quad m \in \mathbb N^*$$
and thus
$$\begin{aligned} &\mathbb P (\limsup_n \{ \omega \mid | X_n (\omega) - X (\omega) | > 1/m \}) \\ ={} &\mathbb P \left ( \bigcap_{N \in \mathbb N} \bigcup_{n \ge N} \{ \omega \mid | X_n (\omega) - X (\omega) | > 1/m \} \right ) = 0, \quad m \in \mathbb N^*. \end{aligned}$$
It follows that $$\begin{aligned} &0 \\ ={} &\mathbb P (\limsup_n \{ \omega \mid | X_n (\omega) - X (\omega) | > 1/m \}) \\ \ge {} &\limsup_n \mathbb P ( \{ \omega \mid | X_n (\omega) - X (\omega) | > 1/m \} \\ \ge {} &\lim_n \mathbb P ( \{ \omega \mid | X_n (\omega) - X (\omega) | > 1/m \} \\ = {} &\lim_n \mathbb P (| X_n - X | > 1/m). \end{aligned}$$
The result then follows.