I have the two vectors $ V1 = \begin{pmatrix} 0.577 \\ 0.577 \\ 0.577 \end{pmatrix} $ and $ V2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $
I need to find the rotation angles when rotating from V1 to V2 using Euler Angles - I must use the rotation matrix here:
R= $\begin{bmatrix} cos(\alpha)cos(\beta) & cos(\alpha)sin(\beta)sin(\gamma)-sin(\alpha)cos(\gamma) & cos(\alpha)sin(\beta)cos(\gamma)+sin(\alpha)sin(\gamma) \\ sin(\alpha)cos(\beta) & sin(\alpha)sin(\beta)sin(\gamma)+cos(\alpha)cos(\gamma) & sin(\alpha)sin(\beta)cos(\gamma)-cos(\alpha)sin(\gamma) \\ -sin(\beta) & cos(\beta)sin(\gamma) & cos(\beta)cos(\gamma) \end{bmatrix}$
I know how to find the angles given R eg. $ \alpha = Atan2(R_{23},R_{33}) $
So what i am essentially missing is solving the equation Ax=b, where i have x and b.
I know this will yield multiple solutions, i just need any.
Any help would be greatly appriciated.