Here is my thinking:
$ $$\displaystyle \begin{array}{{>{\displaystyle}l}}
\ \ \ \ \ \ \lim\limits _{n\rightarrow \infty }\frac{( an+b)^{n}}{( an+c)^{n}} \ \ \ a\neq 0\\
=\ \lim\limits _{n\rightarrow \infty }\frac{e^{n\ln( an+b)}}{e^{n\ln( an+c)}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
=\ \lim\limits _{n\rightarrow \infty } e^{n\ln( an+b) -n\ln( an+c)} \ \\
=\ \lim\limits _{n\rightarrow \infty } e^{n[ \ln( an+b) -\ln( an+c)]}\\
=\lim\limits _{n\rightarrow \infty } e^{n\ln\left(\frac{an+b}{an+c}\right)} \ \ \ \ \ \ \ \ \ \ \ \ \\
=\ \lim\limits _{n\rightarrow \infty } e^{n\ln\left(\frac{1+\frac{b}{an}}{1+\frac{c}{an}}\right)} \ \ \ \ \ \ \ \ \\
=\lim\limits _{n\rightarrow \infty } e^{n\ln1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\
= 1
\end{array}$
But there are two standard solutions of the limit, one is based on $b=c$, the other is based on $b≠c$.
I don't know why to consider these situations. Whatever relationship between $b$ and $c$, seems to fit in my solution?
Please let me know where is wrong. Thanks for help