$$\lim_{x\to \infty} (n\cdot \sin(2 \pi e(n!)))$$
I tried a bit using expansion
$$e=1+1+ \frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$$
$$e*n!= 2n! +\frac{n!}{2!}+\frac{n!}{3!}+\frac{n!}{4!}+\cdots+\frac{n!}{n!}$$
$$\sin(2 \pi e(n!)=\sin(2\pi (1+2+3+\cdots+2n!))$$
I haven't reached till the answer so any help
$\sin$instead of $sin$ (because the latter looks like $s$, multiplied by $i$, multiplied by $n$). You should also use$\cdot$instead of a period to denote multiplication, and$\cdots$or$\dots$for ellipsis. – 5xum Sep 21 '21 at 07:00$e=1+1+ \frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$instead ofe=1+1+ $\frac{1}{2!}$+$\frac{1}{3!}$+$\frac{1}{4!}$+$\cdots+\frac{1}{n!}$. The former yields $e=1+1+ \frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots+\frac{1}{n!}$ which looks much better than the latter's "e=1+1+ $\frac{1}{2!}$+$\frac{1}{3!}$+$\frac{1}{4!}$+$\cdots+\frac{1}{n!}$@" – 5xum Sep 21 '21 at 07:02