A colleague asked me the first one of the following problems:
- For $n\in\mathbb{N}=\{1,2,3,\dotsc\}$, is the inequality \begin{equation} \frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}>1+\frac{1}{n}+\frac{\frac{1}{2}-\ln\sqrt{2n\pi}\,}{n^2}-\frac{5}{12n^3}\label{1}\tag{1} \end{equation} valid?
- If the inequality \eqref{1} is valid, can one find the best constants $\alpha>5$ and $\beta\le5$ such that the double inequality \begin{equation} 1+\frac{1}{n}+\frac{\frac{1}{2}-\ln\sqrt{2n\pi}\,}{n^2}-\frac{\alpha}{12n^3}>\frac{\sqrt[n+1]{(n+1)!}}{\sqrt[n]{n!}}>1+\frac{1}{n}+\frac{\frac{1}{2}-\ln\sqrt{2n\pi}\,}{n^2}-\frac{\beta}{12n^3}, \quad n\in\mathbb{N}\label{2}\tag{2} \end{equation} is valid?
Notice that $n!=\Gamma(n+1)$, where $$ \Gamma(z)= \int_{0}^{\infty}t^{z-1}e^{-t} \textrm{d}t, \quad \Re(z)>0 $$ is the classical Euler gamma function.
To the best of my knowledge, in the papers [1, 2, 3, 4, 5] below, some properties, including increasing property, inequalities, and (logarithmicaly) complete monotonicity, of the functions \begin{align} &\frac{[{\Gamma(x+\alpha+1)}]^{1/(x+\alpha)}}{[{\Gamma(x+1)}]^{1/x}}, & &\frac{[\Gamma(x+1)]^{1/x}}{[\Gamma(x+1+\beta)]^{1/(x+\beta)}}\biggl(1+\frac{\beta}{x}\biggr)^\alpha, \\ &\frac{[\Gamma(x+1)]^{1/x}}{[\Gamma(x+1+\beta)]^{1/(x+\beta)}}\biggl(1+\frac{\beta}{x+1}\biggr)^\alpha,& &\frac{[\Gamma(x+a+1)]^{1/(x+a)}}{[\Gamma(x+b+1)]^{1/(x+b)}} \end{align} were investigated. These results may be useful for answering the above two questions.
References
- H. Alzer and C. Berg, Some classes of completely monotonic functions, II, Ramanujan J. 11 (2006), no. 2, 225--248; available online at https://doi.org/10.1007/s11139-006-6510-5.
- Chao-Ping Chen and Feng Qi, Monotonicity results for the gamma function, Journal of Inequalities in Pure and Applied Mathematics 4 (2003), no. 2, Article 44; available online at http://www.emis.de/journals/JIPAM/article282.html.
- Feng Qi and Chao-Ping Chen, Monotonicity and convexity results for functions involving the gamma function, International Journal of Applied Mathematical Sciences 1 (2004), no. 1, 27--36.
- Feng Qi and Bai-Ni Guo, Some logarithmically completely monotonic functions related to the gamma function, Journal of the Korean Mathematical Society 47 (2010), no. 6, 1283--1297; available online at https://doi.org/10.4134/JKMS.2010.47.6.1283.
- J. Sandor, Sur la fonction gamma, Publ. C.R.M.P. Neuchatel, Serie I, 21 (1989), 4--7.