Consider the stochastic differential equation
$$dS=\left(\mu S+\frac{\Lambda-S}{\omega}\right)dt+\sigma S dW_t.$$
such that $W_t$ is a Wiener process and $\mu,\sigma,\Lambda,\omega\in\mathbb{R}^+$. As $\omega\rightarrow 0$, does $S_t\rightarrow\Lambda$ for all $\mu$ (or is $S\sim\Lambda$)? If the expected value of $S_t$ was given by drift, $\frac{dS}{dt}=\frac{\Lambda-S_t}{\omega}+\mu$, then $\mathbb{E}[S_t]=c_0e^{-t/\omega}+\Lambda+\mu\omega$ and $\mathbb{E}[S_t]\rightarrow\Lambda$ as $\omega\rightarrow0$. Any help would be much appreciated.
Response to Kurt G.
Suppose
\begin{align} S_t&=\Phi_t\Bigg(S_0-\frac{\Lambda}{\omega}\int_0^t\frac{1}{\Phi_s}\,ds\Bigg),\\\ \Phi_t&:=e^{\sigma W_t\,-\,\sigma^2t/2\,+\,\alpha t}.\ \end{align}
If $W_t=0$ for all $t$ (to make our calculation much simpler), then
\begin{align} \int_0^t \frac{1}{\exp\left(\alpha s-\frac{\sigma^2 s}{2}\right)} ds=-\frac{2\left(e^{\frac{1}{2}t\left(\sigma^{2}-2\alpha\right)}-1\right)}{2\alpha-\sigma^{2}}. \end{align}
Hence \begin{equation} \begin{split} S&=e^{\alpha t-\frac{\sigma^2t}{2}}\left(S_0-\frac{\Lambda}{\omega}\left(-\frac{2\left(e^{\frac{1}{2}t\left(\sigma^2-2\alpha\right)}-1\right)}{2\alpha-\sigma^2}\right)\right),\\ &=e^{\alpha t-\frac{t\sigma^2}{2}}\left(S_0+\frac{2\Lambda\left(e^{\frac{t\left(\sigma^2-2\alpha\right)}{2}}-1\right)}{\omega\left(2\alpha-\sigma^2\right)}\right),\\ &=e^{\alpha t-\frac{t\sigma^2}{2}}S_0+\frac{2\Lambda\left(1- e^{\frac{2\alpha t-t\sigma^2}{2}}\right)}{\omega(2\alpha-o^2)}. \end{split} \end{equation}
So, as $\omega\rightarrow 0$, $S\rightarrow -\Lambda$. This seems counterintuitive since $S$ should be increasing when $S<\Lambda$ and decreasing when $S>\Lambda$. So, where is the mistake?