Using a second-degree multivariable Taylor polynomial for $x=(x_{1},...,x_{n})$ it follows that
$$f(x+\Delta x)\approx f(x)+\nabla f(x)\Delta x+\frac{1}{2}\Delta x^{T}H(x)\Delta x$$
with $\nabla f$ the gradient and $H(x)$ the Hessian of $f$.
What is the general form of the third degree polynomial?
My attempt would be something like $\frac{1}{6}\Delta x^{T}I(x)\Delta x^{2}$, such that (e.g., for $n=2$)
$$I(x)\Delta x^{2}=\begin{bmatrix}\frac{\partial^{3}f(x)}{\partial x_{1}^{3}}&3\frac{\partial f}{\partial x_{1}}\frac{\partial^{2}f}{\partial x_{2}^{2}}\\3\frac{\partial f}{\partial x_{2}}\frac{\partial^{2}f}{\partial x_{1}^{2}}&\frac{\partial^{3}f(x)}{\partial x_{2}^{3}}\end{bmatrix}\begin{bmatrix}\Delta x^{2}_{1}\\\Delta x^{2}_{2}\end{bmatrix}$$
and
$$\frac{1}{6}\Delta xI(x)\Delta x^{2}=\frac{1}{6}\frac{\partial^{3}f(x)}{\partial x_{1}^{3}}\Delta x_{1}^{3}+\frac{1}{6}\frac{\partial^{3}f(x)}{\partial x_{2}^{3}}\Delta x_{2}^{3}+\frac{1}{2}\frac{\partial f}{\partial x_{1}}\frac{\partial^{2}f}{\partial x_{2}^{2}}\Delta x_{1}\Delta x_{2}^{2}+\frac{1}{2}\frac{\partial f}{\partial x_{2}}\frac{\partial^{1}f}{\partial x_{1}^{2}}\Delta x_{2}\Delta x_{1}^{2}$$
; however, I know this to be wrong unfortunately.