Claim :
Let $0.5\leq x<1$ then it seems we have :
$$\left(\left(1-x\right)^{-2x}-\frac{\left(1-x\right)^{2x}\left(x\right)^{2\left(1-x\right)}}{2^{4}\left(x\left(1-x\right)\right)^{3}}\right)\left(x^{-2\left(1-x\right)}-1\right)\geq 1$$
Background :
It's a refinement of :
$$\left(\left(1-x\right)^{-\left(2x\right)}-1\right)\left(\left(x\right)^{-\left(2\left(1-x\right)\right)}-1\right)\geq 1\quad (I)$$
With the same constraint as above wich is an inequality due to Vasile Cirtoaje .
My refinement is based on one single and simple fact :
Let $0.5\leq x<1$ then we have :
$$\frac{\left(1-x\right)^{2x}\left(x\right)^{2\left(1-x\right)}}{2^{4}\left(x\left(1-x\right)\right)^{3}}\geq 1$$
The proof of this fact is not hard taking logarithm and derivative .
Also Vasile Cirtoaje proved the inequality $(I)$ with some tools wich are not sufficient to show the refinement above .Generalising this simple fact it seems work with Prove that if $a+b =1$, then $\forall n \in \mathbb{N}, a^{(2b)^{n}} + b^{(2a)^{n}} \leq 1$. .
Edit : We have the precious inequality wich simplify the rest on $x\in [0.5,0.75]$ :
$$\left(\left(1-x\right)^{-2x}-\frac{\left(1-x\right)^{2x}\left(x\right)^{2\left(1-x\right)}}{2^{4}\left(x\left(1-x\right)\right)^{3}}\right)\left(x^{-2\left(1-x\right)}-1\right)\geq\frac{\left(1-x\right)^{2x}\left(x\right)^{2\left(1-x\right)}}{2^{4}\left(x\left(1-x\right)\right)^{3}} \geq 1$$
It works also on a larger interval but like this we can use Bernoulli's inequality next.
Edit 2 :
The claim is also :
Let $0.5\leq x \leq 0.75$ then we have :
$$1\geq x^{2\left(1-x\right)}\left(\frac{\left(1-x\right)^{4x}}{2^{4}\left(x\left(1-x\right)\right)^{3}}+1\right)$$
We have also :
Let $0.5\leq x \leq 0.75$ then we have :
$$(1-x)^{4x}\leq \left(2^{2\left(1-x\right)}x\left(1-x\right)^{2}\cdot2\right)^{2}$$
And using Gerber's theorem we have $x\in[0.5,0.75]$:
$$f\left(x\right)=0.5^{2\left(1-x\right)}+2\cdot0.5^{2\left(1-x\right)}\cdot2\left(1-x\right)\left(x-0.5\right)+2\cdot0.5^{2\left(1-x\right)}\cdot\left(2\left(1-x\right)-1\right)\cdot2\left(1-x\right)\cdot\left(x-0.5\right)^{2}+\frac{4}{3}\cdot0.5^{2\left(1-x\right)}\cdot\left(2\left(1-x\right)-1\right)\cdot2\left(1-x\right)\cdot\left(2\left(1-x\right)-2\right)\cdot\left(x-0.5\right)^{3}\geq x^{2(1-x)}$$
Last edit :
We the following inequalities $x\in[0.5,0.55]$
$$h(x)=\left(\frac{2^{-2\cdot\left(1-x\right)}x}{1-2^{\left(0.95-1\right)}\left(\left(1-x\right)2x\right)^{0.95}}\right)\geq x^{2(1-x)}$$
And :
$$\left(\frac{\left(2^{2\left(1-x\right)}x\left(1-x\right)^{2}\cdot2\right)^{2}}{2^{4}\left(x\left(1-x\right)\right)^{3}}+1\right)h(x)\leq 1$$
I think it's not hard using derivatives .
Question :
How to show the claim ?
Thanks.
Reference :
VASILE CIRTOAJE, PROOFS OF THREE OPEN INEQUALITIES WITH POWER-EXPONENTIAL FUNCTIONS, Journal of Nonlinear Sciences and Applications, 4 (2011), no. 2, 130-137