2

Given $a_n>0$, and $\sum_{n=1}^{\infty}a_n$ converges. Let $$A_m=\frac{1}{m}\sum_{n=1}^{m}a_n\ ,\ B_m=\frac{m}{\sum_{n=1}^{m}a_n^{-1}}$$ representing arithmetic mean and harmonic mean.It's trivial that $\sum_{m=1}^{\infty}A_m$ is not convergent.However, does $\sum_{m=1}^{\infty}B_m$ converge?And if we define $$H_{m}^{s}=\left(\frac{a_1^s+a_2^s+\cdots+a_m^s}{m}\right)^{\frac{1}{s}}$$ where $s\neq0$. Can we find all values of $s$ that makes $\sum_{m=1}^{\infty}H_{m}^{s}$ converge?

TripleR
  • 65
  • 5

0 Answers0