Some time ago, I asked here:
about estimates involving the Hardy-Littlewood-Sobolev inequality. Hence, we know that if $u,v \in L^{2}(\mathbb{R}^{2})$, then $$\int_{\mathbb{R}^{2}}(I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}}|v|dx < +\infty. $$
Now, my question is: if $u_{n}$ or $v_{n}$ goes to infinity in $L^{2}(\mathbb{R}^{2})$, what I can say about $$\int_{\mathbb{R}^{2}}(I_{\beta} \ast |u_{n}|^{\frac{\beta}{2}+1})|u_{n}|^{\frac{\beta}{2}}|v_{n}|dx?$$
And if $u_{n}$ tends to infinity in $L^{2}$, what I can say about
$$\int_{\mathbb{R}^{2}}(I_{\beta} \ast |u_{n}|^{\frac{\beta}{2}+1})|u_{n}|^{\frac{\beta}{2}}u_{n}dx?$$
$\beta \in (0,2)$ .