Let $a,b,c,d \in \mathbb{R}$. Consider the following constraints:
\begin{cases} ab+c+d=15 \\ bc+d+a=24 \\ cd+a+b=42 \\da+b+c=13 \end{cases}
Calculate the value of $a+b+c+d$.
It is easy to use the Gröbner basis to get the value:
\begin{cases} 10849-4501 d+380d^2,-39409+2320c+3420d,-20+29b-9d,1801+2320 a-380 d\} \end{cases}
so the value of $a+b+c+d$ is $\frac{169}{10}$.
What I am curious about is how to use high schools mathematics to get an answer without too much complicated mathematical calculations ?