If $$\lim_{x \to 0} \frac{e^{\frac{-x^2}{2}}-\cos x}{x^3 \sin x}$$
Exsit then Calculate Above limit without using L'Hôpital's and Expansion.
My Approach:
$$l= \lim_{x \to 0} \frac{e^{\frac{-x^2}{2}}-\cos x}{x^3 \sin x}$$
$$l= \lim_{x \to 0} \frac{(e^{\frac{-x^2}{2}}-1)+(1-\cos x)}{x^3 \sin x}$$
$$l= \lim_{x \to 0} \frac{(e^\frac{-x^2}{2}-1)(\frac{-x^2}{2})}{\frac{-x^2}{2} \cdot (x^4) \cdot(\frac{\sin x}{x})}+\frac{(1-\cos x)(x^2)}{(x^2 ) \cdot \frac{(\sin x)}{x} \cdot x^4}$$
But I am Stuck Here. Any help will be Appreciated.