This follows from the fact given in the answer I gave here.
To see this first note that since $(f_n)$ converges weakly in $L^3$, we have $\| f_n\|_3\leq M$. Together with the 1-Lipschitz condition, this means that $\| f_n\|_\infty+ \|f_n'\|_\infty\leq M'$ uniformly in $n$ (1), and so by Arzela-Ascoli, there is a convergent subsequence, but since the limit has to be 0 (by the weak convergence assumption), the whole sequence has to go to 0 (in fact the limit is not only in $L^3$ norm, but uniform).
To see why (1) is true we use the fundamental theorem of calculus:
$$
|f_n(y)| \leq |f_n(x)| + \int_0^1 |f_n'(z)|\, dz, \qquad x,y \in [0,1].
$$
Now integrate with respect to $x$ to get
$$
|f_n(y)|\leq \| f_n\|_1 + \| f_n'\|_1\leq \| f_n\|_3 + \| f_n'\|_\infty \leq M+1,
$$
owing to Hölder's inequality. This gives (1).