I am looking for the explicit formal statement of Gödel's first incompleteness theorem in a formal language (which I assume is the language of first-order Peano arithmetic), permitting only the addition of abbreviating symbols $G(\cdot)$ (used in place of $\ulcorner\cdot\urcorner$) and $G^{-1}(\cdot)$ (the reason for using $G(\cdot)$ instead of $\ulcorner\cdot\urcorner$), and $\mathsf{prf}_T(\cdot)$ - $T$ being the theory whose language the theorem is stated in, provided it is not Peano arithmetic.
Such a statement should begin either $\exists x$, or $T\vdash$.
Response to Noah Schweber's Answer:
Provided that $T\vdash\mathsf{prf}_T(\ulcorner\phi\urcorner)\to\phi$, if $T\vdash \neg\mathsf{prf}_T(\ulcorner\bot\urcorner)\to\exists x(\neg\mathsf{prf}_T(x)\land\neg\mathsf{prf}_T(\mathsf{neg}(x)))$, then $T\vdash \exists x(\neg\mathsf{prf}_T(x)\land\neg\mathsf{prf}_T(\mathsf{neg}(x)))$. In other words, incompleteness conditional the assumption of consistency entail incompleteness. The proof for the case of $\mathsf{PA}$ is as follows:
$$\begin{array} \ 1. & \quad\neg\mathsf{prf_{PA}}(\ulcorner 0=S0\urcorner)\to\exists x(\neg\mathsf{prf_{PA}}(x)\land\neg\mathsf{prf_{PA}}(\mathsf{neg}(x))) & \mathsf{IncThm}\ \small(given)\\ 2. & \quad \neg(0=S0) &\mathsf{Thm1}\\ 3. & \quad\qquad\mathsf{prf_{PA}}(\ulcorner0=S0\urcorner) &\text{assumption}\\ 4. & \quad\qquad\mathsf{prf_{PA}}(\ulcorner0=S0\urcorner)\to(0=S0) & \mathsf{T_{PA}}\\ 5. & \quad\qquad 0=S0 &\mathsf{MP}\ 4,3\\ 6. & \quad\qquad \bot & \mathsf{\bot I}\ 5,2\\ 7. & \quad\qquad \exists x(\neg\mathsf{prf_{PA}}(x)\land\neg\mathsf{prf_{PA}}(\mathsf{neg}(x))) & \mathsf{\bot E}\ 6\\ 8. & \quad \mathsf{prf_{PA}}(\ulcorner0=S0\urcorner)\to\exists x(\neg\mathsf{prf_{PA}}(x)\land\neg\mathsf{prf_{PA}}(\mathsf{neg}(x))) & \mathsf{\to I}\ 3-7\\ 9. & \quad \exists x(\neg\mathsf{prf_{PA}}(x)\land\neg\mathsf{prf_{PA}}(\mathsf{neg}(x))) & \mathsf{Thm}2 \end{array}$$
The last line of the proof is a case of the derived inference rule $\phi\to\psi,\neg\phi\to\psi\vdash\psi$, referred to here as $\mathsf{Thm}2$. The proofs of $\mathsf{Thm}1$ and $\mathsf{Thm}2$ are left as exercises for the reader™.
I've also decided $\mathsf{prf}_T(\ulcorner\phi\urcorner)\to\phi$ is a realization of the Modal axiom $\mathsf{T}$, usually expressed as $\Box\phi\to\phi$, within the theory $T$, hence the justification in line $3$ being labelled $\mathsf{T_{PA}}$. There's probably something to be said about provability logic here, but I'm not remotely qualified to say it.
Now perhaps it is the case that $T\nvdash\mathsf{prf}_T(\ulcorner\phi\urcorner)\to\phi$, in which case... well, I'm not sure. Otherwise, maybe a stronger condition is needed to avoid having a theory proving its own incompleteness? My preliminary guess would be to have something like...
$$\forall x(\mathsf{prf}_T(x)\leftrightarrow\neg\mathsf{prf}_T(\mathsf{neg}(x)))$$
...replace the antecedent.