3

$3\left(x^2 + y^2 +xy\right)\left(y^2 + z^2 +yz\right)\left(z^2 + x^2 +zx\right) \ge \left(x+y+z \right)^2\left(xy+yz+zx\right)^2$

My attempt :

For this I divided by $x^2y^2z^2$

We get

$3\left(\frac{x^2+y^2+xy}{xy}\right)\left(\frac{y^2+z^2+yz}{yz}\right)\left(\frac{x^2+z^2+xz}{xz}\right) \ge \left(x+y+z \right)^2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2 $

Now put

$ a = \frac{x}{y} + \frac{y}{x} + 1 $

$ b = \frac{y}{z} + \frac{z}{y} + 1 $

$ c = \frac{x}{z} + \frac{z}{x} + 1 $

So we get

$ 3abc \ge (a+b+c)^2 $

So we basically have to prove that

$ 3abc \ge (a+b+c)^2 $

I'am struck after this.

Could anyone help?

And yes $ x,y,z \in R $

Also do note $ a,b,c \ge 3 $ iff $x,y,z $ are of same sign

G. Sai Rithvick
  • 346
  • 1
  • 11
  • $(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz \ \le x^2+xy+y^2+y^2+yz+z^2+x^2+xz+z^2$

    $3(y^2+yz+z^2)(z^2+zx+x^2)(x^2+xy+y^2)-(x^2+xy+y^2+y^2+yz+z^2+x^2+xz+z^2)(yz+zx+xy)^2=(x+y+z)^2(y^2z^2-xyz^2+x^2z^2-xy^2z-x^2yz+x^2y^2) \ge0$

    –  Aug 02 '21 at 08:00

0 Answers0