Let $f(n)$ be the number of positive integers $x\le n$ such that $\lambda(k)=x$ has no solution, where $\lambda(k)$ denotes the Carmichael-function.
Does $$\lim_{n\rightarrow \infty} \frac{f(n)}{n}$$ exist , and if yes, is it $1$ or some smaller value ?
The last few lines in a numerical analysis were :
579000000 0.77069874093264248704663212435233160622
580000000 0.77070391551724137931034482758620689655
581000000 0.77070938382099827882960413080895008606
582000000 0.77071472164948453608247422680412371134
583000000 0.77071994511149228130360205831903945112
584000000 0.77072559931506849315068493150684931507
585000000 0.77073061196581196581196581196581196581
This indicates a slow increase, but when I tried small ranges with larger values , the frequency seemed to still increase (above $0.8$). Any ideas ?