Let $T=[0,1]$, $$P=\{x=(x^1,x^2,…,x^n)\in\mathbb{R}^n \vert \; x^{i}\geq 0,i=1,2,…,n; x^1+x^2+…+x^n=1\}.$$ A $T$-strategy is a measurable function $y$ from $T$ to $P$. Hence $y$ is Lebesgue-integrable and we write $\int y$ for $(\int y^1(t)d\lambda,\dots,\int y^n(t)d\lambda)$, where the integration is on $T$. That is, a $T$-strategy $y\in L_1(T\times\{1,2,\dots,n\})$. Let $S$ denote the set of all $T$-strategies endowed with $L_1$ weak topology. Claim: The set $S$ is a compact space.
Questions:
- Does $L_1$ weak topology mean that if a sequence $\{y_{k}\}\subset L_1(T\times\{1,2,\dots,n\})$ converges weakly to $ y\in L_1(T\times\{1,2,\dots,n\})$ if $\int y_{k}^{i}(t)v(t)d\lambda\to \int y^{i}(t)v(t)d\lambda$,$\forall v\in L_{\infty}(T)$, $\forall i=1,2,…,n$?
- How to show the set $S$ is compact?