I am trying to understand the proof of Theorem 1.7 on page 88 of Harvey-Lawson's Calibrated Geometries. I do not understand how they conclude that $(dz_1 \wedge \dots \wedge dz_n, A(e_1\wedge \dots \wedge e_n)) = \det_{\mathbb{C}}A$. I will describe the problem in more detail below.
Consider an n-plane $\zeta \in G(n.2n)$, and pick a basis $\varepsilon_1, \dots, \varepsilon_n$ for $\zeta$. Define the A as the matrix mapping the standard basis $e_1,\dots,e_n,Je_1,\dots,Je_n$ on $\mathbb{R}^{2n} \cong \mathbb{C}^n$, respectively to the vectors $\varepsilon_1, \dots, \varepsilon_n, J\varepsilon_1, \dots, J\varepsilon_n$. Then we have $\varepsilon_1\wedge \dots\wedge \varepsilon_n = A(e_1\wedge \dots\wedge e_n)$. They claim that $$(dz_1 \wedge \dots \wedge dz_n, A(e_1\wedge \dots \wedge e_n)) = \rm{det}_{\mathbb{C}}A .$$
I did the following calculation. In differential geometric language we have $$\frac{\partial}{\partial x_1}\wedge \dots \wedge \frac{\partial}{\partial x_n} = (1+\sqrt{-1})Id\left(\frac{\partial}{\partial z_1}\wedge \dots \wedge \frac{\partial}{\partial z_n}\right)$$ where Id is the identity matrix. And so $$\varepsilon_1\wedge \dots\wedge \varepsilon_n = A\left(\frac{\partial}{\partial x_1}\wedge \dots \wedge \frac{\partial}{\partial x_n}\right) = (1+\sqrt{-1})A\left(\frac{\partial}{\partial z_1}\wedge \dots \wedge \frac{\partial}{\partial z_n}\right).$$ So I think $$(dz_1 \wedge \dots \wedge dz_n, \varepsilon_1\wedge \dots\wedge \varepsilon_n) = \rm{det}_{\mathbb{C}}(A(1+\sqrt{-1})) = (1+\sqrt{-1})^n\rm{det}_{\mathbb{C}} A.$$ I am struggling to understand what my mistake here is. Could you please help me out.