Consider linear system of ODE given by \begin{eqnarray} u'_i(t)&=&\sum\limits_{i=1}^{n}a_{ij}(t)u_j+b_i(t) &\quad i=1,2,\ldots,n\\ u_i(0)&=&u_i^0 &\quad i=1,2,\ldots,n \end{eqnarray}
Suppose $a_{ij},b_i \in L^{\infty}(\mathbb{R}^+)$ and $u_i^0\in \mathbb{R}$ for $i=1,2,\ldots,n,$ then do we have the existence of solution? ?If so how to prove it?
In other words, can we relax continuity assumption on $a_{ij},b_i$ in the existence proof?