Prove $$\prod_p{\left(1-\frac{3}{p^2}\right)}>\frac{1}{8},$$
where $p$ through out all prime numbers.
It' s equivalent to prove that $$ \sum_ {n = 1}^\infty \frac {3^{\Omega(n)}} {n^2} < 8,$$ where $\Omega(n)$ is the number of prime factor of n. For example, $\Omega(p^a)=a$.
The product is $\approx0.125487$ when $p<100000$.