Let $W(\omega,x):\Omega\times\mathbb{R}\rightarrow\mathbb{R}$ be a Brownian motion where $\Omega$ is the sample space. Recall that the quadratic variation of $W$ over the interval $[a,b]$ equals $b-a$ almost surely, that is to say:
$$\langle W \rangle = \lim_{n\rightarrow\infty}\sum_{i=1}^{n} \left| W\left(\omega,a+\frac{i}{n}(b-a)\right)-W \left(\omega,a+\frac{i-1}{n}(b-a)\right) \right|^2 = b-a$$
almost surely.
Now consider some continuous function (this time not a random variable) $f:\mathbb{R}\rightarrow\mathbb{R}$ and consider the more general limit:
$$\langle f \rangle = \lim_{n\rightarrow\infty}\sum_{i=1}^{n} \left| f\left(a+\frac{i}{n}(b-a)\right)-f \left(a+\frac{i-1}{n}(b-a)\right) \right|^p $$
I would like to know if there exists a continuous function $f$ for which $\langle f \rangle$ is finite but non zero for a value of $p$ greater than 2. For example, does there exist a function $f$ of finite but non zero 'cubic variation' ($p=3$).
More generally, for which values of $p$ do such functions $f$ exist.