Assume $v \in C^{2}(U)$ , where $U=\mathbb{R}^{n} \backslash B_{R}$ (the ball is centered at the origin) solves $$ \begin{cases}\Delta v=0, & \text { on } U \\ v=0, & \text { on } \partial U\end{cases} $$ Then show
(a) For $n=2$ and $$ \lim _{x \rightarrow \infty} \frac{v(x)}{\log x}=0 $$ then $v=0$
(b) For $n \geq 3$ and $$ \lim _{x \rightarrow \infty} v(x)=0 $$ then $v=0$
Why isn't it true that by the minimum principle & maximum principle $v$ is identically 0? should I deal with the special cases of the fundamental solution?