Let $f:X\to Y$ be a morphism of smooth algebraic varieties over $\mathbb{C}$.
Since $\mathcal{D}_{X\to Y}$ is a $(\mathcal{D}_X,f^{-1}\mathcal{D}_Y)$-bimodule, given a right $\mathcal{D}_X$-module $M$, we have a natural right $\mathcal{D}_Y$-module defined as $$f_*(M\otimes_{\mathcal{D}_X} \mathcal{D}_{X\to Y}).$$
If I understood correctly, the idea now is to use the equivalence of categories between left and right $\mathcal{D}$-modules to obtain a direct image of left $\mathcal{D}$-modules. This should work in the following way:
- We begin with a left $\mathcal{D}_X$-module $M$;
- Then we obtain a right $\mathcal{D}_X$-module $M\otimes_{\mathcal{O}_X}\omega_X$;
- Then we do the preceding operation, resulting in the right $\mathcal{D}_Y$-module $f_*(M\otimes_{\mathcal{O}_X}\omega_X \otimes_{\mathcal{D}_X}\mathcal{D}_{X\to Y})$;
- Finally, we obtain the left $\mathcal{D}_Y$-module $\omega_Y^\vee\otimes_{\mathcal{O}_Y} f_*(M\otimes_{\mathcal{O}_X}\omega_X \otimes_{\mathcal{D}_X}\mathcal{D}_{X\to Y})$.
This doesn't seems to agree with the usual definition $f_*(\mathcal{D}_{Y\leftarrow X}\otimes_{\mathcal{D}_X}M)$. What is going on here?