Suppose $f$ is in the Schwartz space $S(\mathbb R)$. i.e $f^n=O(\frac{1}{x^k})$ for any $n, k\in \mathbb N,$.
I am trying to show $\frac{d}{dx}\hat f(\xi)$ is the fourier transform of $-2\pi ixf$. i.e $\hat{-2\pi ixf(\xi)}$.
I computed $\frac{\hat f(\xi+h)-\hat f(\xi)}{h}-(\hat{-2\pi ixf})(\xi)=\int_{-\infty}^\infty f(x)e^{-2\pi ix \xi}(\frac{e^{-2\pi i xh}-1}{h}+2\pi ix).$ Fix $\epsilon>0 $, Since $f, xf$ decreaces rapidly, we do not need to worry about the integral on $[-\infty,N]\cup[N,\infty]$. What remains is to estimate $\frac{e^{-2\pi i xh}-1}{h}+2\pi ix$ when $|x|<N$. Here I noticed that $\frac{d}{dh}(e^{-2\pi i xh})(0)=2\pi ix$. So for each $|x|<N$, tehere exists $h_x>0$ such that if $|h|<h_x$, then $|\frac{e^{-2\pi i xh}-1}{h}+2\pi ix|<\frac{\epsilon}{N}$. if $h_x$ is independent of $x$, then we can conclude $|\int_{-N}^N f(x)e^{-2\pi ix \xi}(\frac{e^{-2\pi i xh}-1}{h}+2\pi ix)|<A\epsilon$ for some $A>0$. But I am stuck at removing the dependency of $h_x$ on $x$. Any suggestion?