Let $R$ be the right-shift operator on $\ell^\infty$, i.e., \begin{equation} R(x_1,x_2,...)= (0,x_1,x_2,...). \end{equation} I know the following results from Functional Analysis Proposition 14.11 on p. 316:
Proposition. Let $X$ be a Banach space, $T\in \mathcal{L}(X)$, and $T^\star$ is the adjoint of $T$. Then
(1) $\sigma(T^\star) =\sigma(T)$;
(2) $\sigma_r(T)\subset \sigma_p(T^\star) \subset \sigma_r(T)\cup \sigma_p(T)$;
(3) $\sigma_c(T^\star) \subset \sigma_c(T)$.
Clearly, $\sigma_p(R)=\varnothing$, and $R= A^\star$, where $A$ is the left-shift operator on $\ell^1$. Since the spectral radius of $A$ is $r(A)=1$, $\sigma(A)\subset \{\lambda\in \mathbb{C}:|\lambda|\leq 1\}$. Note that if $|\lambda|<1$, then $\lambda\in \sigma_p(A)$ (an eigenvector is $(1,\lambda,\lambda^2,\lambda^3,...)\in \ell^1$). Moreover, if $|\lambda|=1$, then $\lambda\notin\sigma_p(A)$ (otherwise any eigenvector must form a geometric sequence with a common ratio of $\lambda$, which is not in $\ell^1$). Hence $\sigma_p(A)= \{\lambda\in \mathbb{C}:|\lambda|<1\}$. Since $\sigma(A)$ is closed, we have $\sigma(A)= \{\lambda\in \mathbb{C}:|\lambda|\leq 1\}$. Using the above results, we obtain \begin{equation} \sigma(R)= \sigma(A)=\{\lambda\in \mathbb{C}:|\lambda|\leq 1\}, \end{equation} and \begin{equation} \sigma_r(A) \subset \sigma_p(R)=\varnothing. \end{equation} Therefore, $\sigma_c(A)= \{\lambda\in \mathbb{C}: |\lambda|=1\}$. Also, using (3), we deduce \begin{equation} \sigma_c(R) \subset \sigma_c(A) =\{\lambda\in \mathbb{C}: |\lambda|=1\}. \end{equation} But I have no idea how to determine $\sigma_c(R)$ explicitly. Any ideas would be greatly appreciated.