Firstly, welcome to Math StackExchange!
Let $a,b,c \in \mathbb{Z}$ with $a \neq 0$.
Suppose $a \mid b$ and $a \mid c$. We need to show that $a^2 \mid b \cdot c$.
Since $a \mid b$, we have $ b = a \cdot k_1$ with $k_1 \in \mathbb{Z}$, by the definition of divisibility.
For $a \mid b$, we also have $ c = a \cdot k_2$ with $k_2 \in \mathbb{Z}$.
Multiplying $b$ by $c$:
$
\begin{equation} \label{eq1}
\begin{split}
b \cdot c & = (a \cdot k_1) \cdot (a \cdot k_2) \\
& = a^2 \cdot k_1 \cdot k_2 \\
& = a^2 \cdot k_3 \text{, with } k_3 = k_1 \cdot k_2 \in \mathbb{Z} \\
\end{split}
\end{equation}
$
Therefore, we have $a^2 \mid b \cdot c$ by the definition of divisibility.
I hope this helps you!
$$\begin{cases} \frac ba \in\mathbb Z \ \frac cb \in\mathbb Z\end{cases} \implies \frac ba \times \frac cb=\frac ca \in\mathbb Z $$
$$\frac{bc}{a^2}=\frac ba× \frac ca \in\mathbb Z.$$
– lone student Jun 29 '21 at 22:18