Let $E_i$ be a normed $\mathbb R$-vector space and $\Omega\subseteq E_1$ be open. We can easily show that if $f:\Omega\to E_2$ be Fréchet differentiable
- $\Omega$ is convex and ${\rm D}f$ is bounded$^1$; or
- $\Omega$ is compact$^2$,
then $f\in C^{0,\:1}(\Omega,E_2)$.$^3$
Now I've read that if $E_1=\mathbb R^d$, for some $d\in\mathbb N$, $E_2=\mathbb R$ and $f\in C_c^\infty(\Omega)$, then $f\in C^{0,\:\alpha}(\overline\Omega)$ for all $\alpha\in(0,1]$.
How can we prove this? And does this conclusion hold in more general situations as well?
$^1$ In that case, the Hahn-Banach theorem implies $$\forall x,y\in\Omega:\left\|f(x)-f(y)\right\|_{E_2}\le\sup_{z\in\Omega}\left\|{\rm D}f(z)\right\|_{\mathfrak L(E_1,\:E_2)}\left\|x-y\right\|_{E_1}.\tag2$$
$^2$ In that case, the claim can be shown as described in this answer.
$^3$ Remember that if $(M_i,d_i)$ is a metric space and $\alpha\in(0,1]$, then $$\left\|g\right\|_{C^{0,\:\alpha}(M_1,\:M_2)}:=\sup_{\substack{x,\:y\:\in\:M_1\\x\:\ne\:y}}\frac{d_2(g(x),g(y))}{d_1(x,y)^\alpha}\;\;\;\text{for }g:M_1\to M_2$$ and $$C^{0,\:\alpha}(M_1,M_2):=\left\{g:M_1\to M_2\mid\left\|g\right\|_{C^{0,\:\alpha}(M_1,\:M_2)}<\infty\right\}.$$