The proof in (Kolda and Bader, 2009) may be left out since the authors consider it trivial.
Definitions
(CP decomposition)
Let $\textbf{X} \in \mathbb{R}^{I \times J \times K}$ be a 3-way tensor.
CP decomposition of $\textbf{X}$ can be written elementwise as
$$
\textbf{X} \approx \sum_{r = 1}^{R} a_{ir} b_{jr} c_{kr},
~~~ \text{for} ~~~
i = 1,\ldots,I, ~~ j = 1,\ldots,J, ~~ k = 1,\ldots,K,
$$
where $R$ is a positive integer, $\textbf{a}_r \in \mathbb{R}^{I}$,
$\textbf{b}_r \in \mathbb{R}^{J}$, and $\textbf{c}_r \in \mathbb{R}^{K}$
for $r = 1,\ldots,R$.
(Tucker decomposition)
Let $\textbf{X} \in \mathbb{R}^{I \times J \times K}$ be a 3-way tensor.
Tucker decomposition of $\textbf{X}$ can be written elementwise as
$$
\textbf{X} \approx
\sum_{p = 1}^{P} \sum_{q = 1}^{Q} \sum_{r = 1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr},
~~~ \text{for} ~~~
i = 1,\ldots,I, ~~ j = 1,\ldots,J, ~~ k = 1,\ldots,K,
$$
where $P,Q,R$ is a positive integer,
$\textbf{A} \in \mathbb{R}^{I \times P}$,
$\textbf{B} \in \mathbb{R}^{J \times Q}$, and $\textbf{C} \in \mathbb{R}^{K \times R}$, and
$\textbf{G} \in \mathbb{R}^{P \times Q \times R}$ is the core tensor.
(Superdiagonal tensor) A tensor $\textbf{X} \in \mathbb{R}^{I_1 \times I_2 \times \ldots \times I_N}$ is superdiagonal if
$$
x_{i_1 i_2 \ldots i_N} =
\begin{cases}
1, & ~~\text{if} ~~ i_1 = i_2 = \ldots = i_N \\
0, & ~~\text{otherwise}
\end{cases}
$$
Statement and Its Proof
Statement.
CP decomposition can be viewed as a special case of Tucker where the core tensor is superdiagonal and $P = Q = R$.
Proof.
The proof uses simple algebra to show that an arbitrary Tucker decomposition with superdiagonal core tensor can be reduced to a CP decomposition. Let $[\![\textbf{G}; \textbf{A}, \textbf{B}, \textbf{C}]\!]$ be a Tucker decomposition that satisfies
$$
\tilde{\textbf{X}} =
\sum_{p = 1}^{P} \sum_{q = 1}^{Q} \sum_{r = 1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr},
~~~ \text{for} ~~~
i = 1,\ldots,I, ~~ j = 1,\ldots,J, ~~ k = 1,\ldots,K,
$$
where $\textbf{G}$ is superdiagonal
and
$\tilde{\textbf{X}} \in \mathbb{R}^{I \times J \times K}$ be a 3-way tensor. Then
this equation can be rewritten as
\begin{align}
\tilde{\textbf{X}}
& = \sum_{p = 1}^{P} \sum_{q = 1}^{Q} \sum_{r = 1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr} \\
& = \sum_{p = 1}^{P}
\left( \sum_{q = 1, q \neq p}^{Q} \sum_{r = 1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr}
+ \sum_{r = 1}^{R} g_{ppr} a_{ip} b_{jp} c_{kr} \right) \\
& = \sum_{p = 1}^{P} \sum_{r = 1}^{R} g_{ppr} a_{ip} b_{jp} c_{kr} \\
& = \sum_{p = 1}^{P}
\left( \sum_{r = 1, r \neq p}^{R} g_{ppr} a_{ip} b_{jp} c_{kr}
+ g_{ppp} a_{ip} b_{jp} c_{kp} \right) \\
& = \sum_{p = 1}^{P} a_{ip} b_{jp} c_{kp}.
\end{align}
Then, $[\![\textbf{A}, \textbf{B}, \textbf{C}]\!]$ is a CP decomposition of $\tilde{\textbf{X}}$.
Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 455-500. doi: 10.1137/07070111X