3

How to use $\displaystyle j_n(x)=(-1)^nx^n\left(\frac{1} {x} \frac{d} {dx}\right)^n \left(\frac{\sin x}{x}\right)$?

for example, to find $j_3(x)$

Ben Grossmann
  • 234,171
  • 12
  • 184
  • 355
tweelly
  • 123
  • 1
  • 4

3 Answers3

10

The formula you provided uses a compact way of writing operators.

For example, at $n = 2$, the term $\displaystyle \left(\frac{1}{x} \frac{d}{dx}\right)^2$ should be understood to mean the operator $$\displaystyle \left(\frac{1}{x} \frac{d}{dx}\right)^2=\frac{1}{x} \frac{d}{dx}\frac1x \frac d{dx}.$$

You can see the values of Rayleigh's formula which are Spherical Bessel functions on the Wiki, but lets calculate some of them so you can get a feel for how this operator works.

We have (I am writing these as they are typically written - like on the Wiki page):

$$\displaystyle j_n(x)=(-1)^nx^n\left(\frac{1} {x} \frac{d} {dx}\right)^n \left(\frac{\sin x}{x}\right)$$

So:

$\displaystyle j_0(x) = (-1)^0x^0\left(\frac{1} {x} \frac{d} {dx}\right)^0 \left(\frac{\sin x}{x}\right) = \frac{\sin x}{x}$

$\displaystyle j_1(x) = (-1)^1x^1\left(\frac{1} {x} \frac{d} {dx}\right)^1 \left(\frac{\sin x}{x}\right) = (-1)^1x^1\left(\frac{1} {x} \frac{x \cos x - \sin x}{x^2}\right) = \frac{\sin x}{x^2} - \frac{\cos x}{x}$

$\displaystyle j_2(x) = (-1)^2x^2\left(\frac{1} {x} \frac{d} {dx}\right)^2 \left(\frac{\sin x}{x}\right)$

$\displaystyle = x^2 \left(\frac{1} {x} \frac{d} {dx} \frac{1} {x} \frac{d} {dx}\right) \left(\frac{\sin x}{x}\right)$

$\displaystyle = x^2 \left(\frac{1} {x} \frac{d} {dx} \frac{1} {x} \right) \left(\frac{x \cos x - \sin x}{x^2}\right)$

$\displaystyle = x^2 \left(\frac{1} {x} \frac{d} {dx} \right) \left(\frac{x \cos x - \sin x}{x^3}\right) $

$\displaystyle = x^2 \left(\frac{1} {x} \right) \left(\frac{(3-x^2) \sin x - 3x \cos x}{x^4}\right)$

$\displaystyle = \left(\frac{3}{x^2} -1 \right) \frac{\sin x}{x} - \frac{3 \cos x}{x^2}$

$\displaystyle j_3(x) = (-1)^3x^3\left(\frac{1}{x} \frac{d} {dx}\right)^3 \left(\frac{\sin x}{x}\right) = -x^3 \left(\frac{1}{x} \frac{d}{dx} \frac{1}{x} \frac{d}{dx} \frac{1}{x} \frac{d}{dx} \right)\left(\frac{\sin x}{x}\right) $

After some calculations, we arrive at:

$$j_3(x) = \left(\frac{15}{x^3} - \frac{6}{x} \right) \frac{\sin x}{x} -\left(\frac{15}{x^2} - 1 \right) \frac{\cos x}{x}$$

I will let you work that last one, but if you get stuck, just reply and I will add the details!

Amzoti
  • 56,629
3

Related problem:(I). You can use the new identity for Rayleigh's formula which computes the spherical Bessel functions $ j_n(z) $ of the first kind

$$ j_n(x)=\sum_{k=0}^{n}{ n\brack k} {2}^{n-k}\sum _{s=0}^{k} s! { k\brace s}\sum _{m=0}^{s}{\frac {\left( -1 \right)^{n+s-m}{x}^{-n-1+m}\sin \left( x+\frac{m\pi}{2} \right) }{ m! }}\quad n\in \mathbb{N} \cup {0}. $$

where $ n\brack k $ and $ n\brace k $ are Stirling numbers of the first and second kind respectively.

For instance, for $n=3,4$, you get

$$ -{\frac {-\cos \left( t \right) {t}^{3}+6\,\sin \left( t \right) {t}^{ 2}+15\,\cos \left( t \right) t-15\,\sin \left( t \right) }{{t}^{4}}},$$

$$ {\frac {\sin \left( t \right) {t}^{4}+10\,\cos \left( t \right) {t}^{3 }-45\,\sin \left( t \right) {t}^{2}-105\,\cos \left( t \right) t+105\, \sin \left( t \right) }{{t}^{5}}}.$$

Note: I'll appreciate if someone double check the formula.

0

The operator $\left(\frac{1}{x}\frac{d}{dx}\right)^{n}$ has the following expansion :

\begin{equation} \left(\frac{1}{x}\frac{d}{dx}\right)^{n}. = \sum_{k=0}^{n}b(n, k)\frac{1}{x^{2n-k}}\frac{d^{k}.}{dx^{k}} \end{equation}

where $b(n, k)$ is a Bessel number of the first kind, so Rayleigh's formula becomes:

$\displaystyle j_n(x)=(-1)^nx^n\left(\frac{1} {x} \frac{d} {dx}\right)^n \left(\frac{\sin x}{x}\right)=\frac{(-1)^n}{x^{n+1}}\sum_{k=0}^{n}(-1)^kk!b(n, k)\sum_{i=0}^{k}(-1)^{i}\sin \left(x+\frac{i\pi}{2}\right)\frac{x^i}{i!} $

Hence :

$\displaystyle j_3(x)=\frac{-1}{x^4}\sum_{k=0}^{3}(-1)^kk!b(3, k)\sum_{i=0}^{k}(-1)^{i}\sin \left(x+\frac{i\pi}{2}\right)\frac{x^i}{i!}=\frac{-1}{x^4}\left(-15\sin x+15x \cos x+6x^2\sin x-x^3\cos x \right) $

  • 1
    Your answer could be improved with additional supporting information. Please [edit] to add further details, such as citations or documentation, so that others can confirm that your answer is correct. You can find more information on how to write good answers in the help center. – Community Mar 01 '25 at 23:42