Define $B_t=W_t - tW_1$. Let $\mathcal{F}_t$ and $\mathcal{G}_t$ be the filtrations generated by $\{W_t\}$ and $\{B_t\}$ respectively. Is $B_t$ a martingale wrt (i) $\mathcal{F}_t$ and (ii) $\mathcal{G}_t$?
For $\mathcal{F}_t$:
\begin{align} E[B_t\mid \mathcal{F}_s]=W_s -t E[W_1\mid \mathcal{F}_s]=W_s(1-t)\ne B_s. \end{align}
For $\mathcal{G}_t$:
\begin{align} E[B_t\mid \mathcal{G}_s]= E[W_s -sW_1 + W_t - W_s +(s-t)W_1\mid \mathcal{G}_s]= B_s+E[W_t-W_s\mid \mathcal{G}_s]+(s-t)E[W_1\mid \mathcal{G}_s]= B_s. \end{align}
Is the above reasoning correct?