Let $a_i \in \mathbb R^n$ for $i = 1, 2, \dots, m$. Prove that $f(x) = \ln(\sum_{i=1}^m e^{\langle a_i, x\rangle})$ is convex.
So far I have only got: $f(\alpha x_1 + (1-\alpha) x_2) = \ln (\sum_{k=1}^m e^{\langle a_i, \alpha x_1 + (1-\alpha)x_2\rangle}) = \ln (\sum_{k=1}^m e^{\alpha \langle a_i, x_1\rangle}\cdot e^{(1-\alpha)\langle a_i, x_2\rangle})$, and cannot see how can I get an inequality with $\alpha f(x_1) + (1-\alpha)f(x_2)$.