Analogous of how integration by parts comes from the product rule, from the quotient rule of differentiation:
$$\begin{align*}
\frac uv &= \int \frac {du}{v} - \int\frac{u\ dv}{v^2}\\
\int\frac{u\ dv}{v^2} &= -\frac uv + \int \frac {du}{v}\\
\end{align*}$$
Or directly deriving from integration by parts:
$$
\int \frac{u\ dv}{v^2} = \int u\ d\left(-\frac1v\right) = -\frac{u}{v} + \int\frac{du}{v}
$$
This might have motivated breaking down $1$ into $\cos^2 x + \sin^2 x$, to apply the quotient rule backwards,
$$\begin{align*}
I &= \int \frac{\cos x}{2+\cos x} dx + \int \frac{\sin^2 x}{(2+\cos x)^2}dx\\
&= \int\frac{d(\sin x)}{2+\cos x} - \int \frac{\sin x\ d(2+\cos x)}{(2+\cos x)^2}
\end{align*}$$
But the exact break down of the numerator was not obvious to me. Though by this special case of integration by parts via the quotient rule, let
$$\begin{align*}
v &= 2 + \cos x &
dv &= -\sin x\ dx\\
u &= -(2\cot x +\csc x)&
du &= (2\csc^2x + \csc x \cot x) dx
\end{align*}$$
$$\begin{align*}
\int \frac{2\cos x + 1}{(2+\cos x)^2} dx
&= \int\frac{-(2\cot x + \csc x)(-\sin x\ dx)}{(2+\cos x)^2}\\
&= \frac{2\cot x + \csc x}{2+\cos x} + \int \frac{2\csc^2 x + \csc x \cot x}{2+\cos x} dx\\
&= \frac{2\cot x + \csc x}{2+\cos x} + \int \csc^2 x\cdot \frac{2+\cos x}{2+\cos x} dx\\
&= \frac{2\cot x + \csc x}{2+\cos x} + \int \csc^2 x\ dx\\
&= \frac{2\cot x + \csc x}{2+\cos x} - \cot x + C\\
&= \frac{(2\cot x + \csc x) - \cot x(2+\cos x)}{2+\cos x} + C\\
&= \frac{\csc x - \cot x\cos x}{2+\cos x} + C\\
&= \frac{\sin x (\csc^2 x - \cot^2 x)}{2+\cos x} + C\\
&= \frac{\sin x}{2+\cos x} + C\\
\end{align*}$$
Alternatively, without multiplying the starting numerator and denominator by $\cos^2 x$, let
$$\begin{align*}
v &= 1 + 2\sec x &
dv &= 2\sec x \tan x\ dx\\
u &= \frac12(2\cot x + \csc x)&
du &= -\frac12(2\csc^2x + \csc x \cot x) dx
\end{align*}$$
$$\begin{align*}
\int \frac{\sec x(2+\sec x)}{(1+ 2\sec x)^2} dx
&= \int\frac{\frac12(2\cot x + \csc x)(2\sec x \tan x\ dx)}{(1+2\sec x)^2}\\
&= -\frac{\frac12(2\cot x+\csc x)}{1+2\sec x} + \int\frac{-\frac12 (2\csc^2 x + \csc x \cot x)}{1+2\sec x} dx\\
&= -\frac{\frac12(2\cot x+\csc x)}{1+2\sec x} +\frac12 \int(-\csc x \cot x)\cdot\frac{2\sec x + 1}{1+2\sec x} dx\\
&= -\frac{\frac12(2\cot x+\csc x)}{1+2\sec x} +\frac12 \int(-\csc x \cot x)\ dx\\
&= -\frac{\frac12(2\cot x+\csc x)}{1+2\sec x} +\frac12 \csc x + C\\
&= \frac{-\cot x-\frac12\csc x + \frac12\csc x(1+2\sec x)}{1+2\sec x} + C\\
&= \frac{-\cot x+ \csc x\sec x}{1+2\sec x} + C\\
&= \frac{\tan x(-\cot^2 x+ \csc^2 x)}{1+2\sec x} + C\\
&= \frac{\tan x}{1+2\sec x} + C\\
\end{align*}$$