Should I think of Riemannian Brownian motion as a stochastic process which, in some coordinate system (but not necessarily all), has the Laplace-Beltrami operator as its infinitesimal generator?
Consider the Riemannian manifold $(\mathbb{R}^n, \langle\cdot,\cdot\rangle)$ where $\langle\cdot,\cdot\rangle$ represents the standard Euclidean metric. A (global) coordinate system for the manifold is $(\mathbb{R}^n, \mathrm{Id})$.
The definition of Brownian motion on an $m$-dimensional Riemannian manifold $(M, g)$ is a diffusion process that, in local coordinates has one-half the Laplace-Beltrami operator as its infinitesimal generator. The Laplace-Beltrami operator has a representation in local coordinates $(U, \phi)$ as \begin{align} \Delta f = \frac{1}{\sqrt{\mathrm{det}(g_{ij})(x)}} \sum_{j=1}^m \frac{\partial}{\partial x_j}\left(\sqrt{\mathrm{det}(g_{ij})(x)} ~ \sum_{i=1}^m g^{ij}(x) \frac{\partial}{\partial x_i} f(\phi^{-1}(x))\right) \end{align} where $f\in C^\infty(M)$.
In the case of the manifold $(\mathbb{R}^m, \langle\cdot,\cdot\rangle)$, the representation of the Laplace-Beltrami operator in the local coordinate system $(\mathbb{R}^m,\mathrm{Id})$ is, \begin{align} \Delta f(x) = \sum_{i=1} \frac{\partial^2}{\partial x_i^2} f(x). \end{align} Let $\mathrm{d}X_t^i = \mu_i(X_t)~\mathrm{d}t + \sigma_{j}^{i}(X_t)~\mathrm{d}B^{j}_t$ be a diffusion in the local coordinates $(\mathbb{R}^m,\mathrm{Id})$. The infinitesimal generator of this diffusion is, \begin{align} -\sum_{i=1}^m \mu_i(x)~\frac{\partial}{\partial x_i} f(x) + \frac{1}{2}\sum_{i=1}^m\sum_{j=i+1}^m \sum_{k=1}^m \sigma^{i}_{k}(x)\sigma^{j}_{k}(x) ~\frac{\partial^2}{\partial x_i\partial x_j} f(x). \end{align} Thus, it is clear that the diffusion with $\mu_i(x) = 0$ for $i=1,\ldots, m$ and $\sigma_{i}^{j}(x) = \delta_{ij}$ yields a diffusion that corresponds to Brownian motion in these local coordinates. The diffusion in question is just $\mathrm{d}X_t = \mathrm{d}B_t$ and so this is perfectly aligned with our intuition that, in the chosen coordinates, Brownian motion should just be Euclidean Brownian motion.
Let $\phi :\mathbb{R}^m\to\mathbb{R}^m$ be a diffeomorphism and consider the global coordinate system $(\mathbb{R}^m, \phi^{-1})$. In these coordinates the Laplace-Beltrami operator has the form, \begin{align} \Delta f(x) &= \frac{1}{\left|\mathrm{det}(\nabla \phi(x))\right|} ~\nabla \cdot \left(\left|\mathrm{det}(\nabla \phi(x))\right| ~\left[(\nabla \phi(x))^\top (\nabla \phi(x))\right]^{-1} \nabla f(\phi(x))\right) \\ &= \frac{1}{\left|\mathrm{det}(\nabla \phi(x))\right|} \sum_{j=1}^m\frac{\partial}{\partial x_j}\left(\left|\mathrm{det}(\nabla \phi(x))\right|~ \sum_{i=1}^m g^{ij}(x)\frac{\partial}{\partial x_i} f(\phi(x))\right) \end{align} where \begin{align} g^{ij} &= \left(\left[(\nabla \phi)^\top (\nabla \phi)\right]^{-1}\right)_{ij} \\ &= \left((\nabla \phi)^{-1} ((\nabla \phi)^{-1})^\top\right)_{ij}. \end{align} Therefore, a diffusion whose infinitesimal generator is one-half the Laplace-Beltrami operator in these coordinates is given by, \begin{align} \mathrm{d}X_t^i = \frac{1}{2\left|\mathrm{det}(\nabla \phi(X_t))\right|} \sum_{j=1}^m \frac{\partial}{\partial x_j}\left(\left|\mathrm{det}(\nabla \phi(X_t))\right| g^{ij}(X_t)\right)~\mathrm{d}t + \sum_{j=1}^m ((\nabla \phi(X_t))^{-1})^i_j~\mathrm{d}B_t^j. \end{align} On the other hand, if I set $Y_t = \phi^{-1}(B_t)$ then by Ito's formula I obtain, \begin{align} \mathrm{d}Y^i_t &= \frac{1}{2} \sum_{j=1}^m\sum_{k=1}^m \frac{\partial^2}{\partial x_j\partial x_k} (\phi^{-1}(B_t))^i~ \mathrm{d}B_t^j~\mathrm{d}B_t^k + \sum_{j=1}^m (\nabla \phi^{-1}(B_t))_j^i ~\mathrm{d}B_t^j \\ &= \frac{1}{2} \sum_{j=1}^m \frac{\partial^2}{\partial x_j^2}(\phi^{-1}(B_t))^i ~\mathrm{d}t + \sum_{j=1}^m ((\nabla \phi(B_t))^{-1})_j^i ~\mathrm{d}B_t^j \end{align} I think that $X_t$ and $Y_t$ do not represent the same diffusion. What surprises me about this computation is that the transformation of Brownian motion in the coordinate system $(\mathbb{R}^m, \mathrm{Id})$ via the diffeomorphism $\phi^{-1}$ is not Brownian motion in the coordinate system $(\mathbb{R}^m, \phi^{-1})$. Given this, I'm wondering how I should be conceptualizing Brownian motion on a manifold.
Should I think of it as a stochastic process which, in some coordinate system (but not necessarily all), has the Laplace-Beltrami operator as its infinitesimal generator?