Compute the factor group: $\mathbb{Z} \times \mathbb{Z} \big / \langle (1,2) \rangle$
I don't understand why the answer is $\mathbb{Z}$. Isn't $\mathbb{Z} \times \mathbb{Z} \big / \langle (1,2) \rangle \cong \mathbb{Z} / \langle 1 \rangle \times \mathbb{Z} / \langle 2 \rangle$?
- What is the order of the cyclic groups $\langle 1 \rangle$ $\langle 2 \rangle$?
- Why is $\mathbb{Z} \times \mathbb{Z} \big / \langle (1,2) \rangle \cong \mathbb{Z}$