For a function $\|\cdot\|$ to be a norm, it must satisfy the following: Let $X$ be a vector space over the field $F$. For any $x, y\in X$ and $r\in F$
N1) $\|x\|\geqslant 0$
N2) $\|x\|=0 \rightarrow x=0$
N3) $\|rx\|= |r|\cdot ||x||$
N4) $\|x+y\|\leqslant \|x\| +\|y\|$
We let $X$ and $F$ in this case to be the set complex numbers $\mathbb C$
I managed N1) to N3) but N4) the triangular inequality just doesn't seem to work for modulus of a complex number, how can I show this?