I am mimicking the argument of Hatcher here from example $0.15$ of page no. 15. What the author says is as follows $:$
To verify the homotopy extension property, notice first that $I \times I$ retracts to $(I \times \{0\}) \cup (\partial I \times I),$ hence $B \times I \times I$ retracts to $(B \times I \times \{0\}) \cup (B \times \partial I \times I),$ and this retraction induces a retraction of $M_f \times I$ onto $(M_f \times \{0\}) \cup ((A \cup B) \times I).$
It's not quite clear to me that how does this induced retraction is obtained. I don't know why Hatcher explained important results reluctantly without any rigour. I am trying to think in terms of the following pushout diagrams. The mapping cylinder $M_f$ of $f$ can be given in terms of the following pushout diagram.
$$\require{AMScd} \begin{CD} B @>{i\ :\ b\ \mapsto\ (b,0)}>{}> B \times I \\ @V{f}VV @VV{\overline {f}}V\\ A @>{\overline i}>{\text {}}> M_f \end{CD}$$
The above pushout diagram gives rise to a pushout diagram of the following form $:$
$$\require{AMScd} \begin{CD} B \times I @>{i \times \text {id}_I\ :\ (b,t)\ \mapsto\ (b,0,t) }>{}> B \times I \times I \\ @V{f \times \text {id}_I}VV @VV{\overline f \times \text {id}_I}V\\ A \times I @>{\overline i \times \text {id}_I}>{\text {}}> M_f \times I\end{CD}$$
So in order to get a map $r : M_f \times I \longrightarrow (M_f \times \{0\}) \cup ((A \cup B) \times I)$ we need only to get hold of maps $j_1 : B \times I \times I \longrightarrow (M_f \times \{0\}) \cup ((A \cup B) \times I)$ and $j_2 : A \times I \longrightarrow (M_f \times \{0\}) \cup ((A \cup B) \times I)$ such that $j_1 \circ (i \times \text {id}_I) = j_2 \circ (f \times \text {id}_I).$
Would anybody please help me finding $j_1$ and $j_2\ $? If there is any easier way to approach the problem, I would be happy to learn that also.
Thank you very much.
Now, we have a retarction $\text{Id}_B\times r\colon B\times I\times I\to B\times (I\times 0\cup \partial I\times I)=B\times I\times 0\cup B\times \partial I\times I$ given by $(\text{Id}_B\times r)(b,s,t)=\big(b,r(s,t)\big)=\big(b,r_1(s,t),r_2(s,t)\big)$.
– Sumanta May 21 '21 at 10:20Consider the retraction $R\colon M_f\times I\to M_f\times 0\cup (A'\cup B')\times I$ given by $$R\big([b,s],t\big)=\bigg(\big[b,r_1(s,t)\big],\ r_2(s,t)\bigg),$$$$R\big([a],t\big)=\big([a],t\big).$$ Tell me if this is fine.
– Sumanta May 21 '21 at 10:20