The question is related to my previous post. We already know that $\log x\ll x\ll e^x$ as a growth of the function (how fast the function diverges). I wonder if there is a middle function $f$ such that $\log x\ll f\ll x$. More generally, if $f,g$ be a real function that diverges to infinity as $n\to\infty$ such that the growth $f\ll g$. Then can we find the function $h$ such that $f\ll h\ll g$?
I don't know what tag will be adequate. I hope someone add appropriate tag of this post.
Note: $f\ll g$ if $\lim_{x\to\infty}\frac{f(x)}{g(x)} = 0$.