15

Evaluate: $$\sum_{r=0}^n 2^{n-r} \binom{n+r}{r}$$


This looks like an unusual hockey stick sum. Here are my attempts:

Method 1:

The sum is equivalent to

$$S=\sum_{r=0}^n 2^{n-r} \binom{n+r}{n}=\sum_{r=0}^n 2^{r} \binom{2n-r}{n-r}$$

and I could evaluate neither of these.

Method 2:

$$S=\text{coefficient of $x^n$ in }:$$

$$2^n(1+x)^n\Bigg( 1+\frac{1+x}{2}+\left(\frac{1+x}{2}\right)^2+\cdots+\left(\frac{1+x}{2}\right)^n \Bigg)$$

$$=(1+x)^n\left(\frac{(1+x)^{n+1}-2^{n+1}}{(x-1)}\right)$$

It looks like a heavy task to collect all the $x^n$ coefficients from this expression.


Im out of ideas. Any hint is appreciated.

From Putnam 2020, Q A2

RobPratt
  • 50,938
DatBoi
  • 4,097

8 Answers8

4

Let $$ S_n:=\sum_{k=0}^n\frac{\binom{n+k}{k}}{2^{n+k}} $$ Obviously $S_0=1$. Assume that equality $$S_{n-1}=1\tag1$$ is valid for some $n$. Then it is valid for $n+1$ as well: $$ \begin{align} S_n &=\sum_{k=0}^n\frac{\binom{n+k}{k}}{2^{n+k}}\\ &=\sum_{k=0}^n\frac{\binom{n+k-1}{k-1}+\binom{n-1+k}{k}}{2^{n+k}}\\ &=\frac12\sum_{k=0}^{n-1}\frac{\binom{n+k}{k}}{2^{n+k}}+\frac12\sum_{k=0}^n\frac{\binom{n-1+k}{k}}{2^{n-1+k}}\\ &=\frac12S_n-\frac{\binom{2n}{n}}{2^{2n+1}}+\frac12S_{n-1}+\frac{\binom{2n-1}{n}}{2^{2n}}\\ &=\frac12S_n+\frac12S_{n-1}\implies S_n=S_{n-1}\stackrel{I.H.}=1. \end{align} $$

Thus, by induction the equality $(1)$ is valid for all integer $n\ge0$.

Accordingly your sum is $2^{2n}S_n=4^n$.

user
  • 27,958
4

In another way $$ \eqalign{ & S = \sum\limits_{r = 0}^n {2^{\,n - r} \left( \matrix{ n + r \cr r \cr} \right)} = \cr & = \sum\limits_{k = 0}^n {\left( \matrix{ 2n - k \cr n - k \cr} \right)2^{\,k} = } \quad (1)\cr & = \sum\limits_{0\, \le \,k} {\left( \matrix{ 2n - k \cr n - k \cr} \right)2^{\,k} } = \quad (2) \cr & = \sum\limits_{0\, \le \,k} {\left( \matrix{ 2n - k \cr n - k \cr} \right)\left( {1 + 1} \right)^{\,k} } = \sum\limits_{0\, \le \,k} {\sum\limits_{0\, \le \,j} {\left( \matrix{ 2n - k \cr n - k \cr} \right) \left( \matrix{ k \cr k - j \cr} \right)} } = \quad (3) \cr & = \sum\limits_{0\, \le \,j} {\left( { - 1} \right)^{\,n - j} \sum\limits_{\left( {0\, \le } \right)\,k} {\left( \matrix{ - n - 1 \cr n - k \cr} \right)\left( \matrix{ - j - 1 \cr k - j \cr} \right)} } = \quad (4) \cr & = \sum\limits_{0\, \le \,j} {\left( { - 1} \right)^{\,n - j} \left( \matrix{ - n - j - 2 \cr n - j \cr} \right)} = \quad (5) \cr & = \sum\limits_{0\, \le \,j} {\left( \matrix{ 2n + 1 \cr n - j \cr} \right)} = \sum\limits_{k = 0}^n {\left( \matrix{ 2n + 1 \cr k \cr} \right)} = \quad (6)\cr & = {1 \over 2}\sum\limits_{k = 0}^{2n + 1} {\left( \matrix{ 2n + 1 \cr k \cr} \right)} = 2^{\,2n} \quad (7) \cr} $$ where the steps are:

    1. change index;
    1. remove upper bound (it is implicit in the binomial);
    1. split the $2$;
    1. upper negation ( $\binom{n}{m}=(-1)^m \binom{m-n-1}{m}$ ) on both binomials;
    1. convolution in $k$,
    1. upper negation;
    1. symmetry of the binomial .
G Cab
  • 35,964
3

$$(1+x)^n\left(\frac{(1+x)^{n+1}-2^{n+1}}{(x-1)}\right)$$

You were on the right path, but you just didn't take the final step. Finish:

$$ \frac{(1+x)^n 2^{n+1} }{(1-x)} - \frac{(1+x)^{2n+1} }{(1-x)}$$

Now, I will introduce a 'nice' result( By the cauchy product rule):

$$ \frac{ P(x)}{1-x}= (\sum_i x^i) \sum_{i} a_i x^i = \sum_u c_ux^u$$

Where:

$$ c_u = \sum_{i=0}^u a_i \tag{1}$$

Hence, the applying the coefficient operator and use(1) while I'm at it:

$$ [x^n] \left[\frac{(1+x)^n 2^{n+1} }{(1-x)} - \frac{(1+x)^{2n+1} }{(1-x)} \right] = 2^{n+1} [x^n] \left[ \frac{(1+x)^n}{1-x} \right]- [x^n] \left[ \frac{(1+x)^{2n+1} }{1-x} \right]\\= 2^{n+1} \sum_{i=0}^n \binom{n}{i}-\sum_{i=0}^n \binom{2n+1}{i}$$

Now, by standard results we can work out the first binomial sum:

$$ 2^{n+1} \sum_{i=0}^n \binom{n}{i} = 2^{2n+1}$$

And, the tricky sum/one step more complicated sum is:

$$ S= \sum_{i=0}^n \binom{2n+1}{i} = \sum_{i=0}^n \binom{2n+1}{(2n+1)-i} = \sum_{i=0}^n \binom{2n+1}{(2n+1) - (n-i) } = \sum_{i=0}^n \binom{2n+1}{n+1+i}$$

This leads to:

$$ 2S = \sum_{i=0}^n \binom{2n+1}{i} + \sum_{i=0}^n \binom{2n+1}{n+1+i} = \sum_{i=0}^n \binom{2n+1}{i} = 2^{2n+1}$$

Or,

$$ S= 2^{2n}$$

Put everything together and you have the answer of $4^n$.

For more information about cauchy product rule, you can check out my article about it here

DatBoi
  • 4,097
3

Consider $$\left( \begin{matrix} n \\ k \\ \end{matrix} \right)=\frac{1}{2\pi i}\int\limits_{\left| z \right|=R}^{{}}{\frac{{{\left( 1+z \right)}^{n}}}{{{z}^{k+1}}}dz}$$ so $$\sum\limits_{r=0}^{n}{{{2}^{n-r}}\left( \begin{matrix} n+r \\ r \\ \end{matrix} \right)}=\frac{1}{2\pi i}\int\limits_{\left| z \right|<1}^{{}}{\sum\limits_{r=0}^{n}{{{2}^{n-r}}}\frac{{{\left( 1+z \right)}^{n+r}}}{{{z}^{r+1}}}dz}=\\\frac{1}{2\pi i}\int\limits_{\left| z \right|<1}^{{}}{\frac{{{2}^{n+1}}{{\left( 1+z \right)}^{n}}}{z-1}-\frac{{{\left( 1+z \right)}^{1+2n}}}{\left( z-1 \right){{z}^{n+1}}}dz}\\=\frac{1}{2\pi i}\int\limits_{\left| z \right|<1}^{{}}{\frac{{{\left( 1+z \right)}^{1+2n}}}{\left( 1-z \right){{z}^{n+1}}}dz}$$

Where for convenience we've chosen a circular contour enclosing the origin with radius less than $1$. We can do this because directly after the summation the only contribution comes from a residue at $z=0$ (note there is no residue at $z=1$ in the second line). The final line above reflects this. Now to get the residue at $z=0$... $$res\frac{{{\left( 1+z \right)}^{1+2n}}}{\left( 1-z \right){{z}^{n+1}}}=res\sum\limits_{m=0}^{\infty }{{}}\sum\limits_{k=0}^{\infty }{\left( \begin{matrix} 1+2n \\ k \\ \end{matrix} \right)\frac{1}{{{z}^{n+1-m-k}}}}\\=\sum\limits_{m=0}^{\infty }{\left( \begin{matrix} 1+2n \\ n-m \\ \end{matrix} \right)=}\sum\limits_{m=0}^{n}{\left( \begin{matrix} 1+2n \\ n-m \\ \end{matrix} \right)}=\sum\limits_{m=0}^{n}{\left( \begin{matrix} 1+2n \\ m \\ \end{matrix} \right)}={{4}^{n}}$$ hence $$\sum\limits_{r=0}^{n}{{{2}^{n-r}}\left( \begin{matrix} n+r \\ r \\ \end{matrix} \right)}={{4}^{n}}$$

  • Thank you very much for the answer! My knowledge is limited to calc2, ill look at this when I learn complex analysis :P – DatBoi May 05 '21 at 06:44
  • At the end this approach is based on the same ideas of your second approach, even if it is written in a more "complex" language. (1) Start from interpreting the general term of the summation as the coefficient of a certain order of a binomial expansion. The complex integral is a way to "extract" the right coefficient from (1+z)^n (2) , and we see also appearing a geometric dependance on n, which is good (2) commute this representation with the summation and than extract again the coefficient. At least this is how I see it now... (+1 from me I like this approach) – Thomas May 05 '21 at 07:04
  • I would assume that the integration domain $|z|<1$ is not correct. Besides the usage of $|z|=r$ in the first integral is at the least misleading as you use the symbol $r$ later in the other sense. – user May 05 '21 at 08:13
  • @user I'll agree about the r being confusing - and so lets swap it from r to R. – mathstackuser12 May 05 '21 at 08:33
  • You did not address the other point. Why and how did you pass over from contour to domain integration and how are the residues involved in the case of the domain integration? – user May 05 '21 at 08:41
  • @user probably my poor notation: $\left| z \right|<1$ meaning a circular contour centered at zero and radius less than 1. here chosen more out of habit than necessity. – mathstackuser12 May 05 '21 at 08:47
  • I would propose to clarify this in your answer. – user May 05 '21 at 08:48
  • Channelling the inner Felix Marin :) – Clemens Bartholdy May 05 '21 at 19:58
  • 1
    @mathstackuser12 Note that $$\frac{1}{2\pi i} \int_{|z|=\varepsilon} \frac{1}{z^{n+1}} \frac{1}{1-z} (1+z)^{2n+1} ; dz = [z^n] \frac{1}{1-z} (1+z)^{2n+1} \= \sum_{k=0}^n [z^{n-k}] \frac{1}{1-z} [z^k] (1+z)^{2n+1} = \sum_{k=0}^n {2n+1\choose k} = \frac{1}{2} 2^{2n+1} = 4^n.$$ – Marko Riedel May 06 '21 at 02:21
  • @MarkoRiedel Cool +1. Nice to 'see' you again Marko. – mathstackuser12 May 06 '21 at 03:37
3

In seeking to evaluate

$$S_n = \sum_{r=0}^n 2^{n-r} {n+r\choose r}$$

we find that it is

$$[z^n] \frac{1}{1-2z} \frac{1}{(1-z)^{n+1}} = \mathrm{Res}_{z=0} \frac{1}{z^{n+1}} \frac{1}{1-2z} \frac{1}{(1-z)^{n+1}}.$$

We will use the fact that residues sum to zero, which requires the residue at $z=1/2$ and the residue at $z=1$ as well as the residue at infinity. The latter is zero by inspection, however . We get for the residue at $z=1/2$

$$-\frac{1}{2} \mathrm{Res}_{z=1/2} \frac{1}{z^{n+1}} \frac{1}{z-1/2} \frac{1}{(1-z)^{n+1}}$$

We obtain

$$- \frac{1}{2} 2^{n+1} 2^{n+1} = - 2 \times 4^n.$$

We also have for the residue at $z=1$

$$\mathrm{Res}_{z=1} \frac{1}{z^{n+1}} \frac{1}{1-2z} \frac{1}{(1-z)^{n+1}} \\ = \mathrm{Res}_{z=1} \frac{1}{(1+(z-1))^{n+1}} \frac{1}{-1-2(z-1)} \frac{1}{(1-z)^{n+1}} \\ = (-1)^n \mathrm{Res}_{z=1} \frac{1}{(1+(z-1))^{n+1}} \frac{1}{1+2(z-1)} \frac{1}{(z-1)^{n+1}}.$$

This is

$$(-1)^n \sum_{r=0}^n (-1)^r {n+r\choose r} (-1)^{n-r} 2^{n-r} = \sum_{r=0}^n 2^{n-r} {n+r\choose r} = S_n.$$

We have shown that $S_n - 2 \times 4^n + S_n = 0$ or

$$\bbox[5px,border:2px solid #00A000]{ S_n = 4^n.}$$

For the residue at infinity we get

$$-\mathrm{Res}_{z=0} \frac{1}{z^2} z^{n+1} \frac{1}{1-2/z} \frac{1}{(1-1/z)^{n+1}} = - \mathrm{Res}_{z=0} z^n \frac{1}{z-2} \frac{z^{n+1}}{(z-1)^{n+1}} \\ = - \mathrm{Res}_{z=0} z^{2n+1} \frac{1}{z-2} \frac{1}{(z-1)^{n+1}} = 0.$$

Marko Riedel
  • 64,728
  • Oh jeez, this is a great answer :) I wish I knew enough residue calculus, I had got to the same step with the denominators but didn't know how to pull the coefficients – Clemens Bartholdy May 06 '21 at 10:39
3

Consider the number of binary strings that are $(2n+1)$ digits long with at least $(n+1)$ digits equal to $1$. Let this number be $S$.

Method 1: Flip the $1$'s into $0$'s and vice versa. This covers all binary strings of length $2n+1$: so $2S=2^{2n+1}\implies S=2^{2n}$

Method 2: Consider the $(n+1)th$ $1$ digit. Suppose this is the $(n+1+r)$th digit of the string. Then this yields the desired sum by hockey stick.

So the answer is $\boxed{2^{2n}}$.

TheBestMagician
  • 3,038
  • 9
  • 21
3

OP's second method can be made to work and it gives the simplest as in the following solution.

$$S=\text{Coefficient of $x^n$ in}~~ (1+x)^n\left(\frac{(1+x)^{n+1}-2^{n+1}}{(x-1)}\right).$$ $$S=-\text{Coefficient of $x^n$}~ \text{in} \left((1+x)^{2n+1}(1-x)^{-1}-2^{n+1}(1-x)^{-1}\right)$$ $$S=-\text{Coefficient of $x^n$}~ \text{in} \left((1+x)^{2n+1}\sum_{k=0}^{\infty} x^k-2^{n+1}\sum_{k=0}^{\infty}x^k\right)$$ $$S=- \left(\sum_{k=0}^{n} {2n+1\choose k}-2^{n+1}\sum_{k=0}^{\infty}{n \choose k}\right)=-2^{2n}+2^{2n+1}=2^{2n}$$

Z Ahmed
  • 46,319
1

A combinatorial proof.

Let $U=\{A\subseteq \{1,2,\dots,2n+1\}, |A|>n\}.$

We have that $|U|=2^{2n+1}/2=2^{2n}.$

Given an $A\in U,$ define $m(A)$ as the largest number such that $|A\cap\{1,2,\dots,n+r\}|=n.$ $m(A)$ can be anywhere from $0$ to $n,$ and we always have $m(A)+1\in A.$

Let $U_r=\{A\in U\mid m(A)=r\}.$ What is the size of $U_r?$ We can choose any $n$ elements from $1,2,\dots,n+r$, add the element $n+r+1,$ and then any subset of elements from the remaining $n-r$ elements. So $$|U_r|=\binom{n+r}{n}2^{n-r}.$$

and: $$4^{n}=2^{2n}=|U|=\sum_{r=0}^{n}|U_r|=\sum_{r=0}^{n}2^{n-r}\binom{n+r}n$$

Thomas Andrews
  • 186,215
  • "define $m(A)$ as the largest number such that $|A\cap{1,2,\dots,n+r}|=n.$" This is not understandable. Probably you meant "the largest number $r$". – user May 05 '21 at 08:21