I'm looking for a proof of identity $\bf 4.223.3$ from Gradshteyn and Ryzhik's Tables of Integrals, Series and Products, namely $$ \int_{0}^{\infty}\ln\left(\,1 + 2{\rm e}^{-x}\cos\left(t\right) + {\rm e}^{-2x}\,\right)\,{\rm d}x = \frac{\pi^{2}}{6} - \frac{t^{2}}{2},\quad \left\vert\,t\,\right\vert < \pi $$ ( I suspect it holds for $\left\vert\, t\,\right\vert = \pi$ as well ).
- Unlike the proceeding formulas $\bf 4.223.1$ and $\bf 4.223.2$ for $$ \int_{0}^{\infty}\ln\left(\,1 \pm {\rm e}^{-x}\,\right){\rm d}x, $$ its proof does not appear in part $9$ of Amdeberhan et al.'s Integrals in Gradshteyn and Ryzhik.
- The reference in GR is for table $256$ of the $1867$ work Nouvelles tables d'intégrales définies ( large pdf ).
- One reason I'm interested in the derivation is that the integral looks related to $$ \int_{0}^{\infty}\ln\left(\,1 - 2x{\rm e}^{-x} - {\rm e}^{-2x}\,\right)\,{\rm d}x, $$ which is equivalent to the integral asked in a previous unanswered question.