I have $f:S^3 \rightarrow S^2$ given by $$f(x_0,x_1,x_2,x_3) = (x_0^2+x_1^2-x_2^2-x_3^2, 2x_0x_3+2x_1x_2,2x_1x_3-2x_0x_2)$$
I define $\tilde{f}:S^3\subset \mathbb{R^4} \rightarrow S^2 \subseteq \mathbb{R}^3$ so that I have $$d\tilde{f}_{(x_0,x_1,x_2,x_3)} = \begin{pmatrix} 2x_0 & 2x_1& -2x_2 &-2x_3\\ 2x_3& 2x_2& 2x_1&2x_3 \\ -2x_3 & 2x_3 & -2x_0 & 2x_1 \end{pmatrix}$$ I argued that since the differential has maximum rank, equal to 3 and equal to the dimension of the image, then the differential is surjective and therefore $f$ is a submersion. Is it correct? Or, for example, do I have to argue something more regarding the differential ? Like $d\tilde{f}_x: T_xS^3 \subseteq T_x\mathbb{R^4} \rightarrow T_xS^2 \subseteq T_x\mathbb{R^3} $ ?