0

What will be the remainder when 64! is divided by 71?

Do we need to solve this problem by using MOD theorem or need to expands the factorial?

apnorton
  • 17,929
  • 6
  • 55
  • 115
  • See also http://math.stackexchange.com/questions/99876/closed-form-for-p-n-pmodp-where-p-is-prime. – lhf Jun 03 '13 at 14:41

3 Answers3

4

Hmm. $71$ happens to be a prime. We have Wilson's theorem telling us that for a prime $p$ we have $$ (p-1)!\equiv-1\pmod{p}. $$ So $70!\equiv-1\pmod{71}$ without further ado. Here $$ 70!=64!\cdot65\cdot66\cdot67\cdot68\cdot69\cdot70\equiv 64!(-6)(-5)(-4)(-3)(-2)(-1)=64!\cdot6!\pmod{71}. $$ Can you do the rest?

Jyrki Lahtonen
  • 140,891
4

Hint: You can use Wilson's Theorem to get:

$$70! \equiv -1 \mod 71$$

Then use that $70! = 64!\times 65\times...\times70$.

Milind
  • 3,944
2

Hint $\displaystyle\ \ {\rm mod}\ 71\!:\,\ 64! = \frac{70!}{\color{#c00}{70}\cdots \color{#0a0}{65}}\!\!\stackrel{\rm\ Wilson_{\phantom{ I_I}}}\equiv\!\!\!\! \frac{-1}{\color{#c00}{(-1)}\cdots \color{#0a0}{(-6)}}\equiv \frac{-1}{720}\equiv\frac{70}{10}\equiv 7$

Key Ideas
  • 4,352