I'm currently going through W. Ziller's notes on symmetric spaces, and I've come across one argument he makes which I can't seem to wrap my head around.
Suppose $(G,K)$ is a symmetric pair of the noncompact type with Cartan decomposition $\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$ (that is, the Killing form $B$ is negative definite in $\mathfrak{p}$). I wish to prove that $K$ is a maximal compact subgroup of $G$.
I'll briefly describe Ziller's proof as follows: given that $f\colon \mathfrak{p}\times K\to G$, $f(X,g)=\operatorname{Exp}(X)g$ is a diffeomorphism, where $\operatorname{Exp}$ stands for the Lie exponential map, we suppose a compact subgroup $K\subseteq L\subseteq G$. Since $L$ is compact, we can define an inner product over $\mathfrak{g}$ such that for every $X\in \mathfrak{l}=\operatorname{Lie}(L)$, $\operatorname{ad}_{X}$ is skew-symmetric. This implies that $B|_{\mathfrak{l}}$ is negative semidefinite, and in reality it is negative definite, since its kernel is $\mathfrak{z}(\mathfrak{g})\cap\mathfrak{l}=0$. Because of this, we must have $\mathfrak{k}=\mathfrak{l}$, so that $K=L^{0}$, the identity component of $L$ (hence, $K$ is normal in $L$). Therefore, $L/K$ is a $0$-dimensional compact Lie group (that is, a finite group).
Now the part that I don't understand
Take a nontrivial element $gK\in L/K$, which corresponds to some $g\in L\setminus K$. Since $f$ is a diffeomorphism, we can write $g=\operatorname{Exp}(X)y$ for some uniquely determined $X\in \mathfrak{p}$, $y\in K$. Then, since $L/K$ is finite, we get that for some $n>0$, $g^{n}=\operatorname{Exp}(nX)y'\in K$, so that $\operatorname{Exp}(nX)y'=\operatorname{Exp}(0)z$ for $z\in K$, contradicting that $f$ is injective.
Here is my question: how can we be sure that $g^{n}$ admits an expression as above? Since elements of $G$ don't commute, it doesn't seem obvious to me that we can make such a claim.
Thank you in advance!