0

Consider a set $A$ satisfying $Y\subset A\implies \bigcup Y\in A$ for any $Y$.
Now, I intuitively expect that any set $X\in A$ will satisfy $X = \bigcup Y$ for some $Y\subset A$. But I am not completely sure, and I have no idea how to prove or disprove it.

Any help?

Atom
  • 4,620

1 Answers1

1

If $X\in A$, then $X\subset A$
whence $X = \bigcup \{X\}$.

Atom
  • 4,620