This is a follow-up question to this question (calling on @Jan-Magnus Okland for help). Plugging the following into Macaulay2:
R = QQ[a,b,c,d,e,f]
S = R[l]
T = S[p,q,r,X,Y,Z,MonomialOrder=>Lex]
I=ideal(X-l*(2*a*p+b*q+d*r),Y-l*(b*p+2*q*c+e*r),Z-l*(d*p+e*q+2*f*r),X*p+Y*q+Z*r)
and then
J = groebnerBasis I
Edit: I made a mistake initially that yielded a 1 x 17 Groebner basis. I have corrected this and the correct 1 x 23 basis is shown below.
I get the following output:
o5 = | (e2-4cf)X2+(-2de+4bf)XY+(4cd-2be)XZ+(d2-4af)Y2+(-2bd+4ae)YZ+(b2-4ac)Z2
--------------------------------------------------------------------------
(2cd2-2bde+2ae2+2b2f-8acf)lr+(-2cd+be)X+(bd-2ae)Y+(-b2+4ac)Z
--------------------------------------------------------------------------
(e2-4cf)lrX+(-de+2bf)lrY+(2cd-be)lrZ-eXY+2cXZ+dY2-bYZ
--------------------------------------------------------------------------
(de-2bf)lrX+(-d2+4af)lrY+(bd-2ae)lrZ-eX2+dXY+bXZ-2aYZ
--------------------------------------------------------------------------
(2cd-be)lrX+(-bd+2ae)lrY+(b2-4ac)lrZ-2cX2+2bXY-2aY2
--------------------------------------------------------------------------
(2cd-be)lq+(de-2bf)lr-dY+bZ (bd-2ae)lq+(d2-4af)lr-dX+2aZ
--------------------------------------------------------------------------
(b2-4ac)lq+(bd-2ae)lr-bX+2aY
--------------------------------------------------------------------------
(2cd2-2bde+2ae2)qY2+(2b2e-8ace)qYZ+(-2b2c+8ac2)qZ2+(de2-4cdf)rXY+(-be2+
--------------------------------------------------------------------------
4bcf)rXZ+(-d2e+4aef)rY2+(4cd2-2ae2-8acf)rYZ+(-4bcd+b2e+4ace)rZ2
--------------------------------------------------------------------------
(2cd-be)qX+(-bd+2ae)qY+(b2-4ac)qZ+(de-2bf)rX+(-d2+4af)rY+(bd-2ae)rZ
--------------------------------------------------------------------------
elqX-dlqY+2flrX-dlrZ-XZ 2clqX-blqY+elrX-blrZ-XY blqX-2alqY+dlrX-2alrZ-X2
--------------------------------------------------------------------------
eqXY-2cqXZ-dqY2+bqYZ+2frXY-erXZ-drYZ+brZ2
--------------------------------------------------------------------------
eqX2-dqXY-bqXZ+2aqYZ+2frX2-2drXZ+2arZ2
--------------------------------------------------------------------------
2cqX2-2bqXY+2aqY2+erX2-drXY-brXZ+2arYZ dlp+elq+2flr-Z blp+2clq+elr-Y
--------------------------------------------------------------------------
2alp+blq+dlr-X 2apZ-eqX+dqY+bqZ-2frX+2drZ dpY-bpZ+eqY-2cqZ+2frY-erZ
--------------------------------------------------------------------------
2apY-2cqX+2bqY-erX+drY+brZ pX+qY+rZ |
1 23
o5 : Matrix T <--- T
I am trying to calculate the dual curve, but $\lambda$ (i.e. l in the Macaulay2 equations above) still appears in the basis. I know from my question that the final result should be
$$ (-\frac14e^2+cf)x^2+(\frac12de-bf)xy+(-\frac14d^2+af)y^2+(-cd+\frac12be)x+(\frac12bd-ae)y-\frac14b^2+ac=0. $$
My question has 2 parts:
How do I go from the Groebner basis to the final answer? Does this equivalent system of equations need to be solved? (i.e. if the original system was $F = 0$, do I need to solve $G = 0$ and how would I do so?)
Once I have my 2 dual curves (from their respective Groebner bases), how do I solve the two simultaneously? Can I do it in
Macaulay2, or do I have to do it in another tool?
Couple questions:
– adam.hendry Mar 19 '21 at 15:19Is
--a comment in M2?Part of my confusion was I was looking at the whole GB and not just the first term. Is the first term the "leading term" of the GB? Why do we only look at that term (I'm still learning GB's).
How do I read the output of
groebnerBasis? Where does one term end and the next begin? Some are separated by spaces, but I don't know if multiplication is continued across certain lines.--is a comment, yes. – Jan-Magnus Økland Mar 19 '21 at 15:26T = S[p,q,r,X,Y,Z,MonomialOrder=>Eliminate 3]. The lexicographic order is expensive to compute GB in but gives the most information when computed. – Jan-Magnus Økland Mar 19 '21 at 15:28toString oothe polynomials are separated by commas. (More about monomial orders from M2 help). – Jan-Magnus Økland Mar 19 '21 at 15:46p,q,r)...I think I need to study solving systems of polynomial equations with Groebner bases in greater detail. Do you have any texts/videos/resources you recommend? – adam.hendry Mar 19 '21 at 17:12